These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 22275614)

  • 1. Development of a one-body optical torque sensor for rehabilitation robotic systems.
    Gu GM; Chang PH
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975411. PubMed ID: 22275614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Symmetry-based resistance as a novel means of lower limb rehabilitation.
    Simon AM; Brent Gillespie R; Ferris DP
    J Biomech; 2007; 40(6):1286-92. PubMed ID: 16843472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. VI.3. Rehabilitation robotics.
    Munih M; Bajd T
    Stud Health Technol Inform; 2010; 152():353-66. PubMed ID: 20407204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insertion force in manual and robotic corneal suturing.
    Yang Y; Xu C; Deng S; Xiao J
    Int J Med Robot; 2012 Mar; 8(1):25-33. PubMed ID: 21987368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human movement onset detection from isometric force and torque measurements: a supervised pattern recognition approach.
    Soda P; Mazzoleni S; Cavallo G; Guglielmelli E; Iannello G
    Artif Intell Med; 2010 Sep; 50(1):55-61. PubMed ID: 20510593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression.
    Rocon E; Belda-Lois JM; Ruiz AF; Manto M; Moreno JC; Pons JL
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):367-78. PubMed ID: 17894269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using robotic systems in order to determine biomechanical properties of soft tissues.
    Kunkel ME; Moral A; Westphal R; Rode D; Rilk M; Wahl FM
    Stud Health Technol Inform; 2008; 133():156-65. PubMed ID: 18376024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rehabilitation device with variable resistance and intelligent control.
    Dong S; Lu KQ; Sun JQ; Rudolph K
    Med Eng Phys; 2005 Apr; 27(3):249-55. PubMed ID: 15694609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An accelerometry-based comparison of 2 robotic assistive devices for treadmill training of gait.
    Regnaux JP; Saremi K; Marehbian J; Bussel B; Dobkin BH
    Neurorehabil Neural Repair; 2008; 22(4):348-54. PubMed ID: 18073325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards a parameterizable exoskeleton for training of hand function after stroke.
    Weiss P; Heyer L; Munte TF; Heldmann M; Schweikard A; Maehle E
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650505. PubMed ID: 24187320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel mechatronic body weight support system.
    Frey M; Colombo G; Vaglio M; Bucher R; Jörg M; Riener R
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):311-21. PubMed ID: 17009491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Braccio di Ferro: a new haptic workstation for neuromotor rehabilitation.
    Casadio M; Sanguineti V; Morasso PG; Arrichiello V
    Technol Health Care; 2006; 14(3):123-42. PubMed ID: 16971753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility study of a mini, bone-attached, robotic system for spinal operations: analysis and experiments.
    Wolf A; Shoham M; Michael S; Moshe R
    Spine (Phila Pa 1976); 2004 Jan; 29(2):220-8. PubMed ID: 14722419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and implementation of a control architecture for robot-assisted orthopaedic surgery.
    Barkana DE
    Int J Med Robot; 2010 Mar; 6(1):42-56. PubMed ID: 19943336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gait impairment in neurological disorders: a new technological approach.
    Semprini R; Sale P; Foti C; Fini M; Franceschini M
    Funct Neurol; 2009; 24(4):179-83. PubMed ID: 20412722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. H reflex modulation by transcranial magnetic stimulation in spinal cord injury subjects after gait training with electromechanical systems.
    Benito Penalva J; Opisso E; Medina J; Corrons M; Kumru H; Vidal J; Valls-Solé J
    Spinal Cord; 2010 May; 48(5):400-6. PubMed ID: 19935755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle force and muscle torque in humans require different methods when adjusting for differences in body size.
    Jaric S; Radosavljevic-Jaric S; Johansson H
    Eur J Appl Physiol; 2002 Jul; 87(3):304-7. PubMed ID: 12111294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Research of joint-robotics-based design of biomechanics testing device on human spine].
    Deng G; Tian L; Mao Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Dec; 26(6):1246-9. PubMed ID: 20095479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and static calibration of a six-dimensional force/torque sensor for minimally invasive surgery.
    Yu H; Jiang J; Xie L; Liu L; Shi Y; Cai P
    Minim Invasive Ther Allied Technol; 2014 Jun; 23(3):136-43. PubMed ID: 24345276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perceptual limits for a robotic rehabilitation environment using visual feedback distortion.
    Brewer BR; Fagan M; Klatzky RL; Matsuoka Y
    IEEE Trans Neural Syst Rehabil Eng; 2005 Mar; 13(1):1-11. PubMed ID: 15813400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.