These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 22275615)
1. Design & control of a 3D stroke rehabilitation platform. Cai Z; Tong D; Meadmore KL; Freeman CT; Hughes AM; Rogers E; Burridge JH IEEE Int Conf Rehabil Robot; 2011; 2011():5975412. PubMed ID: 22275615 [TBL] [Abstract][Full Text] [Related]
2. Upper limb stroke rehabilitation: the effectiveness of Stimulation Assistance through Iterative Learning (SAIL). Meadmore KL; Cai Z; Tong D; Hughes AM; Freeman CT; Rogers E; Burridge JH IEEE Int Conf Rehabil Robot; 2011; 2011():5975502. PubMed ID: 22275698 [TBL] [Abstract][Full Text] [Related]
3. Functional electrical stimulation mediated by iterative learning control and 3D robotics reduces motor impairment in chronic stroke. Meadmore KL; Hughes AM; Freeman CT; Cai Z; Tong D; Burridge JH; Rogers E J Neuroeng Rehabil; 2012 Jun; 9():32. PubMed ID: 22676920 [TBL] [Abstract][Full Text] [Related]
4. Computational models of upper-limb motion during functional reaching tasks for application in FES-based stroke rehabilitation. Freeman C; Exell T; Meadmore K; Hallewell E; Hughes AM Biomed Tech (Berl); 2015 Jun; 60(3):179-91. PubMed ID: 25355246 [TBL] [Abstract][Full Text] [Related]
5. Upper-limb stroke rehabilitation using electrode-array based functional electrical stimulation with sensing and control innovations. Kutlu M; Freeman CT; Hallewell E; Hughes AM; Laila DS Med Eng Phys; 2016 Apr; 38(4):366-79. PubMed ID: 26947097 [TBL] [Abstract][Full Text] [Related]
6. Robotic arm skate for stroke rehabilitation. Wong CK; Jordan K; King M IEEE Int Conf Rehabil Robot; 2011; 2011():5975389. PubMed ID: 22275593 [TBL] [Abstract][Full Text] [Related]
7. Adaptive hybrid robotic system for rehabilitation of reaching movement after a brain injury: a usability study. Resquín F; Gonzalez-Vargas J; Ibáñez J; Brunetti F; Dimbwadyo I; Carrasco L; Alves S; Gonzalez-Alted C; Gomez-Blanco A; Pons JL J Neuroeng Rehabil; 2017 Oct; 14(1):104. PubMed ID: 29025427 [TBL] [Abstract][Full Text] [Related]
8. Training of reaching in stroke survivors with severe and chronic upper limb paresis using a novel nonrobotic device: a randomized clinical trial. Barker RN; Brauer SG; Carson RG Stroke; 2008 Jun; 39(6):1800-7. PubMed ID: 18403742 [TBL] [Abstract][Full Text] [Related]
9. A robotic workstation for stroke rehabilitation of the upper extremity using FES. Freeman CT; Hughes AM; Burridge JH; Chappell PH; Lewin PL; Rogers E Med Eng Phys; 2009 Apr; 31(3):364-73. PubMed ID: 18640865 [TBL] [Abstract][Full Text] [Related]
10. Towards brain-robot interfaces in stroke rehabilitation. Gomez-Rodriguez M; Grosse-Wentrup M; Hill J; Gharabaghi A; Scholkopf B; Peters J IEEE Int Conf Rehabil Robot; 2011; 2011():5975385. PubMed ID: 22275589 [TBL] [Abstract][Full Text] [Related]
11. Measurement of reaching movement with 6-DOF upper rehabilitation system 'Robotherapist'. Kikuchi T; Oda K; Isozumi S; Ohyama Y; Shichi N; Furusho J Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4262-5. PubMed ID: 19163654 [TBL] [Abstract][Full Text] [Related]
12. Electrical stimulation and iterative learning control for functional recovery in the upper limb post-stroke. Meadmore K; Exell T; Freeman C; Kutlu M; Rogers E; Hughes AM; Hallewell E; Burridge J IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650359. PubMed ID: 24187178 [TBL] [Abstract][Full Text] [Related]
13. Combining Upper Limb Robotic Rehabilitation with Other Therapeutic Approaches after Stroke: Current Status, Rationale, and Challenges. Mazzoleni S; Duret C; Grosmaire AG; Battini E Biomed Res Int; 2017; 2017():8905637. PubMed ID: 29057269 [TBL] [Abstract][Full Text] [Related]
14. Feasibility of iterative learning control mediated by functional electrical stimulation for reaching after stroke. Hughes AM; Freeman CT; Burridge JH; Chappell PH; Lewin PL; Rogers E Neurorehabil Neural Repair; 2009; 23(6):559-68. PubMed ID: 19190087 [TBL] [Abstract][Full Text] [Related]
15. A neural tracking and motor control approach to improve rehabilitation of upper limb movements. Goffredo M; Bernabucci I; Schmid M; Conforto S J Neuroeng Rehabil; 2008 Feb; 5():5. PubMed ID: 18251996 [TBL] [Abstract][Full Text] [Related]
16. Clinical effects of combined bilateral arm training with functional electrical stimulation in patients with stroke. Wu FC; Lin YT; Kuo TS; Luh JJ; Lai JS IEEE Int Conf Rehabil Robot; 2011; 2011():5975367. PubMed ID: 22275571 [TBL] [Abstract][Full Text] [Related]
17. Online learning and adaptation of patient support during ADL training. Guidali M; Schlink P; Duschau-Wicke A; Riener R IEEE Int Conf Rehabil Robot; 2011; 2011():5975434. PubMed ID: 22275635 [TBL] [Abstract][Full Text] [Related]
18. A decision-theoretic approach in the design of an adaptive upper-limb stroke rehabilitation robot. Huq R; Kan P; Goetschalckx R; Hébert D; Hoey J; Mihailidis A IEEE Int Conf Rehabil Robot; 2011; 2011():5975418. PubMed ID: 22275621 [TBL] [Abstract][Full Text] [Related]
19. A model of the upper extremity using FES for stroke rehabilitation. Freeman CT; Hughes AM; Burridge JH; Chappell PH; Lewin PL; Rogers E J Biomech Eng; 2009 Mar; 131(3):031011. PubMed ID: 19154070 [TBL] [Abstract][Full Text] [Related]
20. Design and implementation of a training strategy in chronic stroke with an arm robotic exoskeleton. Frisoli A; Sotgiu E; Procopio C; Bergamasco M; Rossi B; Chisari C IEEE Int Conf Rehabil Robot; 2011; 2011():5975512. PubMed ID: 22275708 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]