BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 22275617)

  • 21. Effect of added inertia on the pelvis on gait.
    Meuleman J; Terpstra W; van Asseldonk EH; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975493. PubMed ID: 22275690
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neural control of walking as revealed by the velocity field diagram.
    Eke-Okoro ST
    Electromyogr Clin Neurophysiol; 1999 Sep; 39(6):379-84. PubMed ID: 10499209
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of cadence regulation on muscle activation patterns during robot assisted gait: a dynamic simulation study.
    Hussain S; Xie SQ; Jamwal PK
    IEEE J Biomed Health Inform; 2013 Mar; 17(2):442-51. PubMed ID: 23193249
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lateral balance control for robotic gait training.
    Koopman B; Meuleman JH; van Asseldonk EH; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650363. PubMed ID: 24187182
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of therapeutic gait training using a prosthesis and a treadmill for ambulatory patients with hemiparesis.
    Hase K; Suzuki E; Matsumoto M; Fujiwara T; Liu M
    Arch Phys Med Rehabil; 2011 Dec; 92(12):1961-6. PubMed ID: 22133242
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Poincare map based analysis of stroke patients' walking after a rehabilitation by a robot.
    Abedi M; Moghaddam MM; Fallah D
    Math Biosci; 2018 May; 299():73-84. PubMed ID: 29518402
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of added inertia and body weight support on lateral balance control during walking.
    Pennycott A; Wyss D; Vallery H; Riener R
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975415. PubMed ID: 22275618
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Robotic-assisted treadmill therapy improves walking and standing performance in children and adolescents with cerebral palsy.
    Borggraefe I; Schaefer JS; Klaiber M; Dabrowski E; Ammann-Reiffer C; Knecht B; Berweck S; Heinen F; Meyer-Heim A
    Eur J Paediatr Neurol; 2010 Nov; 14(6):496-502. PubMed ID: 20138788
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Model Predictive Control-based gait pattern generation for wearable exoskeletons.
    Wang L; van Asseldonk EH; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975442. PubMed ID: 22275642
    [TBL] [Abstract][Full Text] [Related]  

  • 30. LOPES II--Design and Evaluation of an Admittance Controlled Gait Training Robot With Shadow-Leg Approach.
    Meuleman J; van Asseldonk E; van Oort G; Rietman H; van der Kooij H
    IEEE Trans Neural Syst Rehabil Eng; 2016 Mar; 24(3):352-63. PubMed ID: 26731771
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cortical and spinal excitability changes after robotic gait training in healthy participants.
    Blicher JU; Nielsen JF
    Neurorehabil Neural Repair; 2009 Feb; 23(2):143-9. PubMed ID: 19047360
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of the passive dynamics of walking on ground, tied-belt and split-belt treadmills, and via the Gait Enhancing Mobile Shoe (GEMS).
    Handzić I; Reed KB
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650509. PubMed ID: 24187324
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Walking motion generation, synthesis, and control for biped robot by using PGRL, LPI, and fuzzy logic.
    Li TH; Su YT; Lai SW; Hu JJ
    IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):736-48. PubMed ID: 21095871
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Path control: a method for patient-cooperative robot-aided gait rehabilitation.
    Duschau-Wicke A; von Zitzewitz J; Caprez A; Lunenburger L; Riener R
    IEEE Trans Neural Syst Rehabil Eng; 2010 Feb; 18(1):38-48. PubMed ID: 20194054
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Walking along circular trajectories in Parkinson's disease.
    Guglielmetti S; Nardone A; De Nunzio AM; Godi M; Schieppati M
    Mov Disord; 2009 Mar; 24(4):598-604. PubMed ID: 19117359
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Robot-assisted gait training in multiple sclerosis: a pilot randomized trial.
    Beer S; Aschbacher B; Manoglou D; Gamper E; Kool J; Kesselring J
    Mult Scler; 2008 Mar; 14(2):231-6. PubMed ID: 17942510
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Subject-specific lower limb waveforms planning via artificial neural network.
    Luu TP; Lim HB; Qu X; Hoon KH; Low KH
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975491. PubMed ID: 22275688
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coordination of dynamic balance during gait training in people with acquired brain injury.
    Clark RA; Williams G; Fini N; Moore L; Bryant AL
    Arch Phys Med Rehabil; 2012 Apr; 93(4):636-40. PubMed ID: 22325681
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sustainability of motor performance after robotic-assisted treadmill therapy in children: an open, non-randomized baseline-treatment study.
    Borggraefe I; Kiwull L; Schaefer JS; Koerte I; Blaschek A; Meyer-Heim A; Heinen F
    Eur J Phys Rehabil Med; 2010 Jun; 46(2):125-31. PubMed ID: 20485217
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Parametric generation of three-dimensional gait for robot-assisted rehabilitation.
    Shi D; Zhang W; Ding X; Sun L
    Biol Open; 2020 Mar; 9(3):. PubMed ID: 32001490
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.