These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 22275628)
1. Single degree-of-freedom exoskeleton mechanism design for finger rehabilitation. Wolbrecht ET; Reinkensmeyer DJ; Perez-Gracia A IEEE Int Conf Rehabil Robot; 2011; 2011():5975427. PubMed ID: 22275628 [TBL] [Abstract][Full Text] [Related]
2. Single degree-of-freedom exoskeleton mechanism design for thumb rehabilitation. Yihun Y; Miklos R; Perez-Gracia A; Reinkensmeyer DJ; Denney K; Wolbrecht ET Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1916-20. PubMed ID: 23366289 [TBL] [Abstract][Full Text] [Related]
3. Development of a parametric kinematic model of the human hand and a novel robotic exoskeleton. Burton TM; Vaidyanathan R; Burgess SC; Turton AJ; Melhuish C IEEE Int Conf Rehabil Robot; 2011; 2011():5975344. PubMed ID: 22275549 [TBL] [Abstract][Full Text] [Related]
4. Design of a thumb module for the FINGER rehabilitation robot. Wolbrecht ET; Morse KJ; Perry JC; Reinkensmeyer DJ Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():582-585. PubMed ID: 28268397 [TBL] [Abstract][Full Text] [Related]
5. Finger control in the tripod grasp. Gentilucci M; Caselli L; Secchi C Exp Brain Res; 2003 Apr; 149(3):351-60. PubMed ID: 12632237 [TBL] [Abstract][Full Text] [Related]
6. Force distribution of a cylindrical grip differs between dominant and nondominant hand in healthy subjects. Cai A; Pingel I; Lorz D; Beier JP; Horch RE; Arkudas A Arch Orthop Trauma Surg; 2018 Sep; 138(9):1323-1331. PubMed ID: 29992376 [TBL] [Abstract][Full Text] [Related]
7. A Novel Low-Pressure Robotic Glove Based on CT-Optimized Finger Joint Kinematic Model for Long-Term Rehabilitation of Stroke Patients. Yu J; Luo L; Zhu W; Li Y; Xie P; Zhang L IEEE Trans Neural Syst Rehabil Eng; 2024; 32():53-62. PubMed ID: 38032787 [TBL] [Abstract][Full Text] [Related]
8. Design and feasibility of the T-GRIP thumb exoskeleton to support the lateral pinch grasp of spinal cord injury patients. Haarman CJW; Hekman EEG; Maas EM; Rietman JS; Van Der Kooij H IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176123 [TBL] [Abstract][Full Text] [Related]
9. Sensing and Force-Feedback Exoskeleton (SAFE) Robotic Glove. Ben-Tzvi P; Ma Z IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):992-1002. PubMed ID: 25494512 [TBL] [Abstract][Full Text] [Related]
10. iHandRehab: an interactive hand exoskeleton for active and passive rehabilitation. Li J; Zheng R; Zhang Y; Yao J IEEE Int Conf Rehabil Robot; 2011; 2011():5975387. PubMed ID: 22275591 [TBL] [Abstract][Full Text] [Related]
11. Online kinematic regulation by visual feedback for grasp versus transport during reach-to-pinch. Nataraj R; Pasluosta C; Li ZM Hum Mov Sci; 2014 Aug; 36():134-53. PubMed ID: 24968371 [TBL] [Abstract][Full Text] [Related]
12. An EMG-Controlled Robotic Hand Exoskeleton for Bilateral Rehabilitation. Leonardis D; Barsotti M; Loconsole C; Solazzi M; Troncossi M; Mazzotti C; Castelli VP; Procopio C; Lamola G; Chisari C; Bergamasco M; Frisoli A IEEE Trans Haptics; 2015; 8(2):140-51. PubMed ID: 25838528 [TBL] [Abstract][Full Text] [Related]
13. Design and Implementation of Arch Function for Adaptive Multi-Finger Prosthetic Hand. Yong X; Jing X; Wu X; Jiang Y; Yokoi H Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31412642 [TBL] [Abstract][Full Text] [Related]
14. On the Design of a Novel Underactuated Robotic Finger Prosthesis for Partial Hand Amputation. Jeong GC; Kim Y; Choi W; Gu G; Lee HJ; Hong MB; Kim K IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():861-867. PubMed ID: 31374738 [TBL] [Abstract][Full Text] [Related]
15. Design and Development of a Spherical 5-Bar Thumb Exoskeleton Mechanism for Poststroke Rehabilitation. Ketkar VD; Wolbrecht ET; Perry JC; Farrens A J Med Device; 2023 Jun; 17(2):021002. PubMed ID: 37152413 [TBL] [Abstract][Full Text] [Related]
16. Design of a wearable hand exoskeleton for exercising flexion/extension of the fingers. Jo I; Lee J; Park Y; Bae J IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1615-1620. PubMed ID: 28814051 [TBL] [Abstract][Full Text] [Related]
17. Myoelectric Control of a Soft Hand Exoskeleton Using Kinematic Synergies. Burns MK; Pei D; Vinjamuri R IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1351-1361. PubMed ID: 31670679 [TBL] [Abstract][Full Text] [Related]
18. Hand rehabilitation after stroke using a wearable, high DOF, spring powered exoskeleton. Tianyao Chen ; Lum PS Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():578-581. PubMed ID: 28324934 [TBL] [Abstract][Full Text] [Related]
19. Integration of marker and force data to compute three-dimensional joint moments of the thumb and index finger digits during pinch. Nataraj R; Li ZM Comput Methods Biomech Biomed Engin; 2015; 18(6):592-606. PubMed ID: 23947659 [TBL] [Abstract][Full Text] [Related]
20. Powered exoskeleton with palm degrees of freedom for hand rehabilitation. Richards DS; Georgilas I; Dagnino G; Dogramadzi S Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():4635-8. PubMed ID: 26737327 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]