These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 22275642)

  • 1. Model Predictive Control-based gait pattern generation for wearable exoskeletons.
    Wang L; van Asseldonk EH; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975442. PubMed ID: 22275642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinematic trajectories while walking within the Lokomat robotic gait-orthosis.
    Hidler J; Wisman W; Neckel N
    Clin Biomech (Bristol, Avon); 2008 Dec; 23(10):1251-9. PubMed ID: 18849098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An accelerometry-based comparison of 2 robotic assistive devices for treadmill training of gait.
    Regnaux JP; Saremi K; Marehbian J; Bussel B; Dobkin BH
    Neurorehabil Neural Repair; 2008; 22(4):348-54. PubMed ID: 18073325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subject-specific lower limb waveforms planning via artificial neural network.
    Luu TP; Lim HB; Qu X; Hoon KH; Low KH
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975491. PubMed ID: 22275688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. INS/EKF-based stride length, height and direction intent detection for walking assistance robots.
    Brescianini D; Jung JY; Jang IH; Park HS; Riener R
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975363. PubMed ID: 22275567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An alternative approach to synthesizing bipedal walking.
    van der Kooij H; Jacobs R; Koopman B; van der Helm F
    Biol Cybern; 2003 Jan; 88(1):46-59. PubMed ID: 12545282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator.
    Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Velocity-dependent reference trajectory generation for the LOPES gait training robot.
    Tufekciler N; van Asseldonk EH; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975414. PubMed ID: 22275617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency.
    Sawicki GS; Ferris DP
    J Exp Biol; 2009 Jan; 212(Pt 1):21-31. PubMed ID: 19088207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reference trajectory generation for rehabilitation robots: complementary limb motion estimation.
    Vallery H; van Asseldonk EH; Buss M; van der Kooij H
    IEEE Trans Neural Syst Rehabil Eng; 2009 Feb; 17(1):23-30. PubMed ID: 19211320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetric passive dynamic walker.
    Honeycutt C; Sushko J; Reed KB
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975465. PubMed ID: 22275663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resistance training improves gait kinematics in persons with multiple sclerosis.
    Gutierrez GM; Chow JW; Tillman MD; McCoy SC; Castellano V; White LJ
    Arch Phys Med Rehabil; 2005 Sep; 86(9):1824-9. PubMed ID: 16181949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A three-dimensional kinematic and dynamic study of the lower limb during the stance phase of gait using an homogeneous matrix approach.
    Doriot N; Chèze L
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):21-7. PubMed ID: 14723490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Synergic analysis and dynamics pattern of human normal gait during swing phase].
    Yang Y; Wang R; Hao Z; Jin D; Zhang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Feb; 23(1):69-73. PubMed ID: 16532813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictive modelling of human walking over a complete gait cycle.
    Ren L; Jones RK; Howard D
    J Biomech; 2007; 40(7):1567-74. PubMed ID: 17070531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive locomotor training on an end-effector gait robot: evaluation of the ground reaction forces in different training conditions.
    Tomelleri C; Waldner A; Werner C; Hesse S
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975492. PubMed ID: 22275689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methodology for determining the sensitivity of swing leg toe clearance and leg length to swing leg joint angles during gait.
    Moosabhoy MA; Gard SA
    Gait Posture; 2006 Dec; 24(4):493-501. PubMed ID: 16439130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the Human Gait Phases by Using Bèzier Curves to Generate Walking Trajectories for Lower-Limb Exoskeletons.
    Zuccatti M; Zinni G; Maludrottu S; Pericu V; Laffranchi M; Del Prete A; De Michieli L; Vassallo C
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An active foot lifter orthosis based on a PCPG algorithm.
    Duvinage M; Jiménez-Fábian R; Castermans T; Verlinden O; Dutoit T
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975335. PubMed ID: 22275540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical considerations in the design of lower limb exoskeletons.
    Cenciarini M; Dollar AM
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975366. PubMed ID: 22275570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.