These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 22275648)

  • 1. Study on possible control algorithms for lower limb rehabilitation system.
    Kordasz M; Kuczkowski K; Sauer P
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975450. PubMed ID: 22275648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical considerations in the design of lower limb exoskeletons.
    Cenciarini M; Dollar AM
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975366. PubMed ID: 22275570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control system design of a 3-DOF upper limbs rehabilitation robot.
    Denève A; Moughamir S; Afilal L; Zaytoon J
    Comput Methods Programs Biomed; 2008 Feb; 89(2):202-14. PubMed ID: 17881080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of a disturbance-rejection controller for robotic-enhanced limb rehabilitation trainings.
    Madoński R; Kordasz M; Sauer P
    ISA Trans; 2014 Jul; 53(4):899-908. PubMed ID: 24168844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collision detection and untangling for surgical robotic manipulators.
    Morvan T; Martinsen M; Reimers M; Samset E; Elle OJ
    Int J Med Robot; 2009 Sep; 5(3):233-42. PubMed ID: 19367614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A lower-limb power-assist robot with perception-assist.
    Hayashi Y; Kiguchi K
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975445. PubMed ID: 22275645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-scale separation of a class of robust PD-type tracking controllers for robot manipulators.
    González-Vázquez S; Moreno-Valenzuela J
    ISA Trans; 2013 May; 52(3):418-28. PubMed ID: 23332586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A patient transfer apparatus between bed and stretcher.
    Wang H; Kasagami F
    IEEE Trans Syst Man Cybern B Cybern; 2008 Feb; 38(1):60-7. PubMed ID: 18270082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model Predictive Control-based gait pattern generation for wearable exoskeletons.
    Wang L; van Asseldonk EH; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975442. PubMed ID: 22275642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of a rotary passive viscoelastic joint for wearable robots.
    Carpino G; Accoto D; Di Palo M; Tagliamonte NL; Sergi F; Guglielmelli E
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975356. PubMed ID: 22275560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. VI.3. Rehabilitation robotics.
    Munih M; Bajd T
    Stud Health Technol Inform; 2010; 152():353-66. PubMed ID: 20407204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Passive velocity field control of a forearm-wrist rehabilitation robot.
    Erdogan A; Satici AC; Patoglu V
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975433. PubMed ID: 22275634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamics.
    Wai RJ; Yang ZW
    IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1326-46. PubMed ID: 18784015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inertia compensation control of a one-degree-of-freedom exoskeleton for lower-limb assistance: initial experiments.
    Aguirre-Ollinger G; Colgate JE; Peshkin MA; Goswami A
    IEEE Trans Neural Syst Rehabil Eng; 2012 Jan; 20(1):68-77. PubMed ID: 22271684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hybrid active force control of a lower limb exoskeleton for gait rehabilitation.
    Taha Z; Abdul Majeed APP; Zainal Abidin AF; Hashem Ali MA; Khairuddin IM; Deboucha A; Wong Paul Tze MY
    Biomed Tech (Berl); 2018 Jul; 63(4):491-500. PubMed ID: 28809745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of safe mechanism for surgical robots using equilibrium point control method.
    Park S; Lim H; Kim BS; Song JB
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):570-7. PubMed ID: 17354936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of EMG signals for controlling exoskeleton robots.
    Fleischer C; Wege A; Kondak K; Hommel G
    Biomed Tech (Berl); 2006 Dec; 51(5-6):314-9. PubMed ID: 17155866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot.
    Ju MS; Lin CC; Lin DH; Hwang IS; Chen SM
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):349-58. PubMed ID: 16200758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying lower limb joint position sense using a robotic exoskeleton: a pilot study.
    Domingo A; Marriott E; de Grave RB; Lam T
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975455. PubMed ID: 22275653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamical network interactions in distributed control of robots.
    Buscarino A; Fortuna L; Frasca M; Rizzo A
    Chaos; 2006 Mar; 16(1):015116. PubMed ID: 16599782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.