These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 22275649)

  • 1. Patient adaptive control of end-effector based gait rehabilitation devices using a haptic control framework.
    Hussein S; Kruger J
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975451. PubMed ID: 22275649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review on bio-cooperative control in gait rehabilitation.
    Koenig A; Omlin X; Novak D; Riener R
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975454. PubMed ID: 22275652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inducing self-selected human engagement in robotic locomotion training.
    Collins SH; Jackson RW
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650488. PubMed ID: 24187305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive locomotor training on an end-effector gait robot: evaluation of the ground reaction forces in different training conditions.
    Tomelleri C; Waldner A; Werner C; Hesse S
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975492. PubMed ID: 22275689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synchronized walking coordination for impact-less footpad contact of an overground gait rehabilitation system: NaTUre-gaits.
    Wang P; Low KH; Tow A
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975353. PubMed ID: 22275557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients.
    Hesse S; Waldner A; Tomelleri C
    J Neuroeng Rehabil; 2010 Jun; 7():30. PubMed ID: 20584307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Taking a lesson from patients' recovery strategies to optimize training during robot-aided rehabilitation.
    Colombo R; Sterpi I; Mazzone A; Delconte C; Pisano F
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):276-85. PubMed ID: 22623406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robot assisted treadmill training: mechanisms and training strategies.
    Hussain S; Xie SQ; Liu G
    Med Eng Phys; 2011 Jun; 33(5):527-33. PubMed ID: 21216650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive position anticipation in a support robot for overground gait training enhances transparency.
    Everarts C; Vallery H; Bolliger M; Ronsse R
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650483. PubMed ID: 24187300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury.
    Aoyagi D; Ichinose WE; Harkema SJ; Reinkensmeyer DJ; Bobrow JE
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):387-400. PubMed ID: 17894271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle coordination in healthy subjects during floor walking and stair climbing in robot assisted gait training.
    Hussein S; Schmidt H; Volkmar M; Werner C; Helmich I; Piorko F; Krüger J; Hesse S
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1961-4. PubMed ID: 19163075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An optimized design of a parallel robot for gait training.
    Maddalena M; Saadat M; Rastegarpanah A; Loureiro RCV
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():418-423. PubMed ID: 28813855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time closed-loop control of cognitive load in neurological patients during robot-assisted gait training.
    Koenig A; Novak D; Omlin X; Pulfer M; Perreault E; Zimmerli L; Mihelj M; Riener R
    IEEE Trans Neural Syst Rehabil Eng; 2011 Aug; 19(4):453-64. PubMed ID: 21827971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The use of a robot-assisted Gait Trainer GT1 in patients in the acute period of cerebral stroke: a pilot study].
    Skvortsova VI; Ivanova GE; Kovrazhkina EA; Rumiantseva NA; Staritsyn AN; Suvorov AIu; Sogomonian EK
    Zh Nevrol Psikhiatr Im S S Korsakova; 2008; Suppl 23():28-34. PubMed ID: 19425367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robot-assisted humanized passive rehabilitation training based on online assessment and regulation.
    Pan L; Song A; Duan S; Xu B
    Biomed Mater Eng; 2015; 26 Suppl 1():S655-64. PubMed ID: 26406061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-adaptive robot training of stroke survivors for continuous tracking movements.
    Vergaro E; Casadio M; Squeri V; Giannoni P; Morasso P; Sanguineti V
    J Neuroeng Rehabil; 2010 Mar; 7():13. PubMed ID: 20230610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study.
    Hornby TG; Campbell DD; Kahn JH; Demott T; Moore JL; Roth HR
    Stroke; 2008 Jun; 39(6):1786-92. PubMed ID: 18467648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive impedance control of a robotic orthosis for gait rehabilitation.
    Hussain S; Xie SQ; Jamwal PK
    IEEE Trans Cybern; 2013 Jun; 43(3):1025-34. PubMed ID: 23193241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review in gait rehabilitation devices and applied control techniques.
    Chaparro-Cárdenas SL; Lozano-Guzmán AA; Ramirez-Bautista JA; Hernández-Zavala A
    Disabil Rehabil Assist Technol; 2018 Nov; 13(8):819-834. PubMed ID: 29577779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ARMin: a robot for patient-cooperative arm therapy.
    Nef T; Mihelj M; Riener R
    Med Biol Eng Comput; 2007 Sep; 45(9):887-900. PubMed ID: 17674069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.