These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 22275652)
1. A review on bio-cooperative control in gait rehabilitation. Koenig A; Omlin X; Novak D; Riener R IEEE Int Conf Rehabil Robot; 2011; 2011():5975454. PubMed ID: 22275652 [TBL] [Abstract][Full Text] [Related]
2. Control strategies for effective robot assisted gait rehabilitation: the state of art and future prospects. Cao J; Xie SQ; Das R; Zhu GL Med Eng Phys; 2014 Dec; 36(12):1555-66. PubMed ID: 25205588 [TBL] [Abstract][Full Text] [Related]
3. Patient adaptive control of end-effector based gait rehabilitation devices using a haptic control framework. Hussein S; Kruger J IEEE Int Conf Rehabil Robot; 2011; 2011():5975451. PubMed ID: 22275649 [TBL] [Abstract][Full Text] [Related]
4. A novel method for automatic treadmill speed adaptation. von Zitzewitz J; Bernhardt M; Riener R IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):401-9. PubMed ID: 17894272 [TBL] [Abstract][Full Text] [Related]
5. Robot assisted treadmill training: mechanisms and training strategies. Hussain S; Xie SQ; Liu G Med Eng Phys; 2011 Jun; 33(5):527-33. PubMed ID: 21216650 [TBL] [Abstract][Full Text] [Related]
6. Patient-cooperative strategies for robot-aided treadmill training: first experimental results. Riener R; Lünenburger L; Jezernik S; Anderschitz M; Colombo G; Dietz V IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):380-94. PubMed ID: 16200761 [TBL] [Abstract][Full Text] [Related]
7. Adaptive locomotor training on an end-effector gait robot: evaluation of the ground reaction forces in different training conditions. Tomelleri C; Waldner A; Werner C; Hesse S IEEE Int Conf Rehabil Robot; 2011; 2011():5975492. PubMed ID: 22275689 [TBL] [Abstract][Full Text] [Related]
8. Path control: a method for patient-cooperative robot-aided gait rehabilitation. Duschau-Wicke A; von Zitzewitz J; Caprez A; Lunenburger L; Riener R IEEE Trans Neural Syst Rehabil Eng; 2010 Feb; 18(1):38-48. PubMed ID: 20194054 [TBL] [Abstract][Full Text] [Related]
9. A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury. Aoyagi D; Ichinose WE; Harkema SJ; Reinkensmeyer DJ; Bobrow JE IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):387-400. PubMed ID: 17894271 [TBL] [Abstract][Full Text] [Related]
10. Reference trajectory generation for rehabilitation robots: complementary limb motion estimation. Vallery H; van Asseldonk EH; Buss M; van der Kooij H IEEE Trans Neural Syst Rehabil Eng; 2009 Feb; 17(1):23-30. PubMed ID: 19211320 [TBL] [Abstract][Full Text] [Related]
11. Gait impairment in neurological disorders: a new technological approach. Semprini R; Sale P; Foti C; Fini M; Franceschini M Funct Neurol; 2009; 24(4):179-83. PubMed ID: 20412722 [TBL] [Abstract][Full Text] [Related]
12. Real-time closed-loop control of cognitive load in neurological patients during robot-assisted gait training. Koenig A; Novak D; Omlin X; Pulfer M; Perreault E; Zimmerli L; Mihelj M; Riener R IEEE Trans Neural Syst Rehabil Eng; 2011 Aug; 19(4):453-64. PubMed ID: 21827971 [TBL] [Abstract][Full Text] [Related]
13. Adaptive position anticipation in a support robot for overground gait training enhances transparency. Everarts C; Vallery H; Bolliger M; Ronsse R IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650483. PubMed ID: 24187300 [TBL] [Abstract][Full Text] [Related]
14. Velocity-dependent reference trajectory generation for the LOPES gait training robot. Tufekciler N; van Asseldonk EH; van der Kooij H IEEE Int Conf Rehabil Robot; 2011; 2011():5975414. PubMed ID: 22275617 [TBL] [Abstract][Full Text] [Related]
15. An optimized design of a parallel robot for gait training. Maddalena M; Saadat M; Rastegarpanah A; Loureiro RCV IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():418-423. PubMed ID: 28813855 [TBL] [Abstract][Full Text] [Related]
16. A lower-limb power-assist robot with perception-assist. Hayashi Y; Kiguchi K IEEE Int Conf Rehabil Robot; 2011; 2011():5975445. PubMed ID: 22275645 [TBL] [Abstract][Full Text] [Related]
17. A survey of bio-inspired compliant legged robot designs. Zhou X; Bi S Bioinspir Biomim; 2012 Dec; 7(4):041001. PubMed ID: 23151609 [TBL] [Abstract][Full Text] [Related]
18. VI.3. Rehabilitation robotics. Munih M; Bajd T Stud Health Technol Inform; 2010; 152():353-66. PubMed ID: 20407204 [TBL] [Abstract][Full Text] [Related]
19. Virtual Reality to control active participation in a subacute stroke patient during robot-assisted gait training. Bergmann J; Krewer C; Müller F; Koenig A; Riener R IEEE Int Conf Rehabil Robot; 2011; 2011():5975407. PubMed ID: 22275610 [TBL] [Abstract][Full Text] [Related]
20. Robotic orthoses for body weight-supported treadmill training. Winchester P; Querry R Phys Med Rehabil Clin N Am; 2006 Feb; 17(1):159-72. PubMed ID: 16517349 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]