These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 22275659)

  • 41. [Biomechanics of arthrodesis of the major joints of the extremities].
    Kummer B
    Orthopade; 1996 Apr; 25(2):99-103. PubMed ID: 8692576
    [TBL] [Abstract][Full Text] [Related]  

  • 42. On the derivation of a tensor to calculate six degree-of-freedom, musculotendon joint stiffness: implications for stability and impedance analyses.
    Cashaback JG; Potvin JR; Pierrynowski MR
    J Biomech; 2013 Oct; 46(15):2741-4. PubMed ID: 24028892
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A self-aligning end-effector robot for individual joint training of the human arm.
    Balasubramanian S; Guguloth S; Mohammed JS; Sujatha S
    J Rehabil Assist Technol Eng; 2021; 8():20556683211019866. PubMed ID: 34567612
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Estimation of joint impedance using short data segments.
    Ludvig D; Perreault EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4120-3. PubMed ID: 22255246
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bayesian Estimation of Human Impedance and Motion Intention for Human-Robot Collaboration.
    Yu X; He W; Li Y; Xue C; Li J; Zou J; Yang C
    IEEE Trans Cybern; 2021 Apr; 51(4):1822-1834. PubMed ID: 31647450
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Robust identification of multi-joint human arm impedance based on dynamics decomposition: a modeling study.
    Kang SH; Zhang LQ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4453-6. PubMed ID: 22255327
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Joint impedance decreases during movement initiation.
    Ludvig D; Antos SA; Perreault EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3304-7. PubMed ID: 23366632
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An improved force-based impedance control method for the HDU of legged robots.
    Ba K; Yu B; Gao Z; Zhu Q; Ma G; Kong X
    ISA Trans; 2019 Jan; 84():187-205. PubMed ID: 30309724
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Double loop control strategy with different time steps based on human characteristics.
    Gu GM; Lee J; Kim J
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1925-8. PubMed ID: 23366291
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Impedance Model of the Interaction Between Environment and Human Body and Its Modification Design.
    Murai A
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1805-1808. PubMed ID: 30440745
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Composite Learning Enhanced Robot Impedance Control.
    Sun T; Peng L; Cheng L; Hou ZG; Pan Y
    IEEE Trans Neural Netw Learn Syst; 2020 Mar; 31(3):1052-1059. PubMed ID: 31107667
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Fundamentals of shoulder physiology].
    GERARD Y
    Fr Med; 1955 Nov; 18(11):5-19. PubMed ID: 13277645
    [No Abstract]   [Full Text] [Related]  

  • 53. Degrees of Freedom for Allan Deviation Estimates of Multiple Clocks.
    Koppang PA; Ekstrom CR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Apr; 63(4):571-4. PubMed ID: 26529760
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The translational value of shoulder biomechanics research.
    Dickerson CR; Cutti AG
    J Electromyogr Kinesiol; 2016 Aug; 29():1-3. PubMed ID: 26792417
    [No Abstract]   [Full Text] [Related]  

  • 55. Stochastic estimation of human arm impedance under nonlinear friction in robot joints: a model study.
    Chang PH; Kang SH
    J Neurosci Methods; 2010 May; 189(1):97-112. PubMed ID: 20298718
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Inter-joint coupling and joint angle synergies of human catching movements.
    Bockemühl T; Troje NF; Dürr V
    Hum Mov Sci; 2010 Feb; 29(1):73-93. PubMed ID: 19945187
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Redundancy resolution of the human arm and an upper limb exoskeleton.
    Kim H; Miller LM; Byl N; Abrams GM; Rosen J
    IEEE Trans Biomed Eng; 2012 Jun; 59(6):1770-9. PubMed ID: 22510944
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Robots with a gentle touch: advances in assistive robotics and prosthetics.
    Harwin WS
    Technol Health Care; 1999; 7(6):411-7. PubMed ID: 10665674
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Stochastic estimation of human shoulder impedance with robots: an experimental design.
    Park K; Chang PH
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975461. PubMed ID: 22275659
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.