BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 22275662)

  • 1. Wrist and Finger Torque Sensor for the quantification of upper limb motor impairments following brain injury.
    Stienen AH; Moulton TS; Miller LC; Dewald JP
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975464. PubMed ID: 22275662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A wrist and finger force sensor module for use during movements of the upper limb in chronic hemiparetic stroke.
    Miller LC; Ruiz-Torres R; Stienen AH; Dewald JP
    IEEE Trans Biomed Eng; 2009 Sep; 56(9):2312-7. PubMed ID: 19567336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ACT-4D: a novel rehabilitation robot for the quantification of upper limb motor impairments following brain injury.
    Stienen AH; McPherson JG; Schouten AC; Dewald JP
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975460. PubMed ID: 22275658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences between flexion and extension synergy-driven coupling at the elbow, wrist, and fingers of individuals with chronic hemiparetic stroke.
    McPherson LM; Dewald JPA
    Clin Neurophysiol; 2019 Apr; 130(4):454-468. PubMed ID: 30771722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motor impairments related to brain injury timing in early hemiparesis. Part II: abnormal upper extremity joint torque synergies.
    Sukal-Moulton T; Krosschell KJ; Gaebler-Spira DJ; Dewald JP
    Neurorehabil Neural Repair; 2014 Jan; 28(1):24-35. PubMed ID: 23911972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involuntary paretic wrist/finger flexion forces and EMG increase with shoulder abduction load in individuals with chronic stroke.
    Miller LC; Dewald JP
    Clin Neurophysiol; 2012 Jun; 123(6):1216-25. PubMed ID: 22364723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wrist-RoboHab: a robot for treatment and evaluation of brain injury patients.
    Baniasad MA; Farahmand M; Ansari NN
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975506. PubMed ID: 22275702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motor impairment factors related to brain injury timing in early hemiparesis. Part I: expression of upper-extremity weakness.
    Sukal-Moulton T; Krosschell KJ; Gaebler-Spira DJ; Dewald JP
    Neurorehabil Neural Repair; 2014 Jan; 28(1):13-23. PubMed ID: 24009182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abnormal synergies and associated reactions post-hemiparetic stroke reflect muscle activation patterns of brainstem motor pathways.
    McPherson LM; Dewald JPA
    Front Neurol; 2022; 13():934670. PubMed ID: 36299276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke.
    Rong W; Li W; Pang M; Hu J; Wei X; Yang B; Wai H; Zheng X; Hu X
    J Neuroeng Rehabil; 2017 Apr; 14(1):34. PubMed ID: 28446181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients.
    Daly JJ; Ruff RL
    ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A planar 3DOF robotic exoskeleton for rehabilitation and assessment.
    Ball SJ; Brown IE; Scott SH
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4024-7. PubMed ID: 18002882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic analysis of the wrist and fingers during fastball and curveball pitches.
    Shibata S; Kageyama M; Inaba Y; Yoshioka S; Fukashiro S
    Eur J Sport Sci; 2022 Feb; 22(2):136-145. PubMed ID: 33331246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Method to Quantify Multi-Degree-of-Freedom Lower Limb Isometric Joint Torques in Children with Hemiplegia
    Goyal V; Sukal-Moulton T; Dewald JPA
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1521-1524. PubMed ID: 31946183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The contribution of the wrist, elbow and shoulder joints to single-finger tapping.
    Dennerlein JT; Kingma I; Visser B; van Dieën JH
    J Biomech; 2007; 40(13):3013-22. PubMed ID: 17467717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robotic-assisted rehabilitation of the upper limb after acute stroke.
    Masiero S; Celia A; Rosati G; Armani M
    Arch Phys Med Rehabil; 2007 Feb; 88(2):142-9. PubMed ID: 17270510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A variable structure pantograph mechanism for comprehensive upper extremity haptic movement training.
    Oblak J; Perry JC; Jung JH; Cikajlo I; Keller T; Matjacić Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5859-62. PubMed ID: 21096924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. General coordination of shoulder, elbow and wrist dynamics during multijoint arm movements.
    Galloway JC; Koshland GF
    Exp Brain Res; 2002 Jan; 142(2):163-80. PubMed ID: 11807572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporating the length-dependent passive-force generating muscle properties of the extrinsic finger muscles into a wrist and finger biomechanical musculoskeletal model.
    Binder-Markey BI; Murray WM
    J Biomech; 2017 Aug; 61():250-257. PubMed ID: 28774467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical design of a distal arm exoskeleton for stroke and spinal cord injury rehabilitation.
    Pehlivan AU; Celik O; O'Malley MK
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975428. PubMed ID: 22275629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.