These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 22275670)

  • 1. Experimental studies on the human gait using a tethered pelvic assist device (T-PAD).
    Vashista V; Mustafa SK; Agrawal SK
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975472. PubMed ID: 22275670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinematic trajectories while walking within the Lokomat robotic gait-orthosis.
    Hidler J; Wisman W; Neckel N
    Clin Biomech (Bristol); 2008 Dec; 23(10):1251-9. PubMed ID: 18849098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of added inertia on the pelvis on gait.
    Meuleman J; Terpstra W; van Asseldonk EH; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975493. PubMed ID: 22275690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric adaptation in human walking using the Tethered Pelvic Assist Device (TPAD).
    Vashista V; Reisman DS; Agrawal SK
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650385. PubMed ID: 24187204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the Adaptation of Pelvic Motion by Applying 3-dimensional Guidance Forces Using TPAD.
    Kang J; Vashista V; Agrawal SK
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1558-1567. PubMed ID: 28287978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fixating the pelvis in the horizontal plane affects gait characteristics.
    Veneman JF; Menger J; van Asseldonk EH; van der Helm FC; van der Kooij H
    Gait Posture; 2008 Jul; 28(1):157-63. PubMed ID: 18207406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and evaluation of Mina: a robotic orthosis for paraplegics.
    Neuhaus PD; Noorden JH; Craig TJ; Torres T; Kirschbaum J; Pratt JE
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975468. PubMed ID: 22275666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of muscle damage following eccentric exercise on gait biomechanics.
    Paschalis V; Giakas G; Baltzopoulos V; Jamurtas AZ; Theoharis V; Kotzamanidis C; Koutedakis Y
    Gait Posture; 2007 Feb; 25(2):236-42. PubMed ID: 16714113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lateral balance control for robotic gait training.
    Koopman B; Meuleman JH; van Asseldonk EH; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650363. PubMed ID: 24187182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of a minimally constraining, passively supported gait training exoskeleton: ALEX II.
    Winfree KN; Stegall P; Agrawal SK
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975499. PubMed ID: 22275695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pelvic and lower limb compensatory actions of subjects in an early stage of hip osteoarthritis.
    Watelain E; Dujardin F; Babier F; Dubois D; Allard P
    Arch Phys Med Rehabil; 2001 Dec; 82(12):1705-11. PubMed ID: 11733886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model Predictive Control-based gait pattern generation for wearable exoskeletons.
    Wang L; van Asseldonk EH; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975442. PubMed ID: 22275642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gait coordination in pregnancy: transverse pelvic and thoracic rotations and their relative phase.
    Wu W; Meijer OG; Lamoth CJ; Uegaki K; van Dieën JH; Wuisman PI; de Vries JI; Beek PJ
    Clin Biomech (Bristol); 2004 Jun; 19(5):480-8. PubMed ID: 15182983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Timed Frontal Plane Pelvic Moments During Overground Walking With a Mobile TPAD System.
    Stramel DM; Prado A; Roy SH; Kim H; Agrawal SK
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():48-57. PubMed ID: 36264728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bilateral claudication results in alterations in the gait biomechanics at the hip and ankle joints.
    Chen SJ; Pipinos I; Johanning J; Radovic M; Huisinga JM; Myers SA; Stergiou N
    J Biomech; 2008 Aug; 41(11):2506-14. PubMed ID: 18586253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury.
    Aoyagi D; Ichinose WE; Harkema SJ; Reinkensmeyer DJ; Bobrow JE
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):387-400. PubMed ID: 17894271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of mechanically and physiologically imposed stiff-knee gait patterns on the energy cost of walking.
    Lewek MD; Osborn AJ; Wutzke CJ
    Arch Phys Med Rehabil; 2012 Jan; 93(1):123-8. PubMed ID: 22200391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in the coordination of hip and pelvis kinematics with mode of locomotion.
    Franz JR; Paylo KW; Dicharry J; Riley PO; Kerrigan DC
    Gait Posture; 2009 Apr; 29(3):494-8. PubMed ID: 19124245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subject-specific lower limb waveforms planning via artificial neural network.
    Luu TP; Lim HB; Qu X; Hoon KH; Low KH
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975491. PubMed ID: 22275688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Intra and interindividual variations of pelvic mobility in normal adult walk].
    Dujardin F; Selva O; Mejjad O; Pasero D; Piraux JL; Thomine JM
    Rev Chir Orthop Reparatrice Appar Mot; 1995; 81(7):592-600. PubMed ID: 8729804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.