These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 22275678)

  • 1. A configuration dependent muscle model for the myoelectric control of a transfemoral prosthesis.
    Hoover CD; Fite KB
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975480. PubMed ID: 22275678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.
    Au S; Berniker M; Herr H
    Neural Netw; 2008 May; 21(4):654-66. PubMed ID: 18499394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Running with a powered knee and ankle prosthesis.
    Shultz AH; Lawson BE; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):403-12. PubMed ID: 25020138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical analysis of stair ambulation in lower limb amputees.
    Schmalz T; Blumentritt S; Marx B
    Gait Posture; 2007 Feb; 25(2):267-78. PubMed ID: 16725325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EMG control of a bionic knee prosthesis: exploiting muscle co-contractions for improved locomotor function.
    Dawley JA; Fite KB; Fulk GD
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650389. PubMed ID: 24187208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complementary limb motion estimation for the control of active knee prostheses.
    Vallery H; Burgkart R; Hartmann C; Mitternacht J; Riener R; Buss M
    Biomed Tech (Berl); 2011 Feb; 56(1):45-51. PubMed ID: 21303189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Does having a computerized prosthetic knee influence cognitive performance during amputee walking?
    Williams RM; Turner AP; Orendurff M; Segal AD; Klute GK; Pecoraro J; Czerniecki J
    Arch Phys Med Rehabil; 2006 Jul; 87(7):989-94. PubMed ID: 16813788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Obstacle crossing in lower limb amputees.
    Vrieling AH; van Keeken HG; Schoppen T; Otten E; Halbertsma JP; Hof AL; Postema K
    Gait Posture; 2007 Oct; 26(4):587-94. PubMed ID: 17275306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of function, performance, and preference as transfemoral amputees transition from mechanical to microprocessor control of the prosthetic knee.
    Hafner BJ; Willingham LL; Buell NC; Allyn KJ; Smith DG
    Arch Phys Med Rehabil; 2007 Feb; 88(2):207-17. PubMed ID: 17270519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Online human training of a myoelectric prosthesis controller via actor-critic reinforcement learning.
    Pilarski PM; Dawson MR; Degris T; Fahimi F; Carey JP; Sutton RS
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975338. PubMed ID: 22275543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling and simulation of muscle forces of trans-tibial amputee to study effect of prosthetic alignment.
    Fang L; Jia X; Wang R
    Clin Biomech (Bristol, Avon); 2007 Dec; 22(10):1125-31. PubMed ID: 17942203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinematics in the terminal swing phase of unilateral transfemoral amputees: microprocessor-controlled versus swing-phase control prosthetic knees.
    Mâaref K; Martinet N; Grumillier C; Ghannouchi S; André JM; Paysant J
    Arch Phys Med Rehabil; 2010 Jun; 91(6):919-25. PubMed ID: 20510984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uphill and downhill walking in unilateral lower limb amputees.
    Vrieling AH; van Keeken HG; Schoppen T; Otten E; Halbertsma JP; Hof AL; Postema K
    Gait Posture; 2008 Aug; 28(2):235-42. PubMed ID: 18242995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mobility function of a prosthetic knee joint with an automatic stance phase lock.
    Andrysek J; Klejman S; Torres-Moreno R; Heim W; Steinnagel B; Glasford S
    Prosthet Orthot Int; 2011 Jun; 35(2):163-70. PubMed ID: 21697198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bio-Inspired Adaptive Control for Active Knee Exoprosthetics.
    Pagel A; Ranzani R; Riener R; Vallery H
    IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2355-2364. PubMed ID: 28858807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prosthetic loading during kneeling of persons with transfemoral amputation.
    Magnissalis EA; Solomonidis SE; Spence WD; Paul JP; Zahedi S
    J Rehabil Res Dev; 1999 Jul; 36(3):164-72. PubMed ID: 10659799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Dynamic loads at knee joint of trans-tibial amputee on different terrains].
    Jia X; Zhang M; Fan Y; Wang R
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Apr; 22(2):221-4. PubMed ID: 15884522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive control of powered transfemoral prostheses based on adaptive dynamic programming.
    Yue Wen ; Ming Liu ; Si J; He Huang
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5071-5074. PubMed ID: 28269408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laboratory evaluation of a unified theory for simultaneous multiple axis artificial arm control.
    Jerard RB; Jacobsen SC
    J Biomech Eng; 1980 Aug; 102(3):199. PubMed ID: 19530801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Output space tracking control for above-knee prosthesis.
    Popović DB; Kalanović VD
    IEEE Trans Biomed Eng; 1993 Jun; 40(6):549-57. PubMed ID: 8262536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.