These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 22275680)

  • 1. Robotic wheelchair control interface based on headrest pressure measurement.
    Heitmann J; Köhn C; Stefanov D
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975482. PubMed ID: 22275680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward gesture controlled wheelchair: a proof of concept study.
    Kawarazaki N; Stefanov D; Diaz AI
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650348. PubMed ID: 24187167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Hephaestus Smart Wheelchair System.
    Simpson RC; Poirot D; Baxter F
    IEEE Trans Neural Syst Rehabil Eng; 2002 Jun; 10(2):118-22. PubMed ID: 12236449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A collaborative wheelchair system.
    Zeng Q; Teo CL; Rebsamen B; Burdet E
    IEEE Trans Neural Syst Rehabil Eng; 2008 Apr; 16(2):161-70. PubMed ID: 18403284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autonomous function of wheelchair-mounted robotic manipulators to perform daily activities.
    Chung CS; Wang H; Cooper RA
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650378. PubMed ID: 24187197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Case-based reasoning emulation of persons for wheelchair navigation.
    Peula JM; Urdiales C; Herrero I; Fernandez-Carmona M; Sandoval F
    Artif Intell Med; 2012 Oct; 56(2):109-21. PubMed ID: 23068883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Next generation autonomous wheelchair control.
    Benson J; Barrett S
    Biomed Sci Instrum; 2005; 41():283-8. PubMed ID: 15850119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autonomous assistance navigation for robotic wheelchairs in confined spaces.
    Cheein FA; Carelli R; De la Cruz C; Muller S; Bastos Filho TF
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():503-6. PubMed ID: 21095654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust human machine interface based on head movements applied to assistive robotics.
    Perez E; López N; Orosco E; Soria C; Mut V; Freire-Bastos T
    ScientificWorldJournal; 2013; 2013():589636. PubMed ID: 24453877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of position and isometric joysticks for powered wheelchair driving.
    Cooper RA; Jones DK; Fitzgerald S; Boninger ML; Albright SJ
    IEEE Trans Biomed Eng; 2000 Jul; 47(7):902-10. PubMed ID: 10916261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vision based interface system for hands free control of an Intelligent Wheelchair.
    Ju JS; Shin Y; Kim EY
    J Neuroeng Rehabil; 2009 Aug; 6():33. PubMed ID: 19660132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a collaborative wheelchair system in cerebral palsy and traumatic brain injury users.
    Zeng Q; Burdet E; Teo CL
    Neurorehabil Neural Repair; 2009 Jun; 23(5):494-504. PubMed ID: 19074687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards a new modality-independent interface for a robotic wheelchair.
    Bastos-Filho TF; Cheein FA; Müller SM; Celeste WC; de la Cruz C; Cavalieri DC; Sarcinelli-Filho M; Amaral PF; Perez E; Soria CM; Carelli R
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):567-84. PubMed ID: 23744700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A wheelchair operation assistance control for a wearable robot using the user's residual function.
    Mizutani N; Watanabe T; Yano K; Aoki T; Nishimoto Y; Kobayashi Y
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650465. PubMed ID: 24187282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collaborative control for a robotic wheelchair: evaluation of performance, attention, and workload.
    Carlson T; Demiris Y
    IEEE Trans Syst Man Cybern B Cybern; 2012 Jun; 42(3):876-88. PubMed ID: 22275718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biometrically modulated collaborative control for an assistive wheelchair.
    Urdiales C; Fernandez-Espejo B; Annicchiaricco R; Sandoval F; Caltagirone C
    IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):398-408. PubMed ID: 20699203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An adaptable optimal controller for electric wheelchairs.
    Brown KE; Iñigo RM; Johnson BW
    J Rehabil Res Dev; 1987; 24(2):87-98. PubMed ID: 3585787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assisting versus repelling force-feedback for learning of a line following task in a wheelchair.
    Chen X; Agrawal SK
    IEEE Trans Neural Syst Rehabil Eng; 2013 Nov; 21(6):959-68. PubMed ID: 23475377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collaborative path planning for a robotic wheelchair.
    Zeng Q; Teo CL; Rebsamen B; Burdet E
    Disabil Rehabil Assist Technol; 2008 Nov; 3(6):315-24. PubMed ID: 19117192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The NavChair Assistive Wheelchair Navigation System.
    Levine SP; Bell DA; Jaros LA; Simpson RC; Koren Y; Borenstein J
    IEEE Trans Rehabil Eng; 1999 Dec; 7(4):443-51. PubMed ID: 10609632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.