These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 22275684)

  • 1. Neural correlates of motor learning and performance in a virtual ball putting task.
    Pitto L; Novakovic V; Basteris A; Sanguineti V
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975487. PubMed ID: 22275684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motor imagery facilitates force field learning.
    Anwar MN; Tomi N; Ito K
    Brain Res; 2011 Jun; 1395():21-9. PubMed ID: 21555118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of robotically modulating kinematic variability on motor skill learning and motivation.
    Duarte JE; Reinkensmeyer DJ
    J Neurophysiol; 2015 Apr; 113(7):2682-91. PubMed ID: 25673732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EEG correlates of haptic feedback in a visuomotor tracking task.
    Lin CL; Shaw FZ; Young KY; Lin CT; Jung TP
    Neuroimage; 2012 May; 60(4):2258-73. PubMed ID: 22348883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The BioMotionBot: a robotic device for applications in human motor learning and rehabilitation.
    Bartenbach V; Sander C; Pöschl M; Wilging K; Nelius T; Doll F; Burger W; Stockinger C; Focke A; Stein T
    J Neurosci Methods; 2013 Mar; 213(2):282-97. PubMed ID: 23276545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain activity preceding a 2D manual catching task.
    Tombini M; Zappasodi F; Zollo L; Pellegrino G; Cavallo G; Tecchio F; Guglielmelli E; Rossini PM
    Neuroimage; 2009 Oct; 47(4):1735-46. PubMed ID: 19389476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral modulation of frontal EEG during motor skill acquisition: a mobile EEG study.
    Wong SW; Chan RH; Mak JN
    Int J Psychophysiol; 2014 Jan; 91(1):16-21. PubMed ID: 24095979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural co-activation as a yardstick of implicit motor learning and the propensity for conscious control of movement.
    Zhu FF; Poolton JM; Wilson MR; Maxwell JP; Masters RS
    Biol Psychol; 2011 Apr; 87(1):66-73. PubMed ID: 21315795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinematic and myoelectric analysis of skill acquisition: II. 150cm subject group.
    Vorro J; Hobart D
    Arch Phys Med Rehabil; 1981 Nov; 62(11):582-9. PubMed ID: 7316716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement and generalization of arm motor performance through motor imagery practice.
    Gentili R; Papaxanthis C; Pozzo T
    Neuroscience; 2006 Feb; 137(3):761-72. PubMed ID: 16338093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards a biomarker of motor adaptation: integration of kinematic and neural factors.
    Molteni E; Cimolin V; Preatoni E; Rodano R; Galli M; Bianchi AM
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):258-67. PubMed ID: 22498702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuroanatomical correlates of motor acquisition and motor transfer.
    Seidler RD; Noll DC
    J Neurophysiol; 2008 Apr; 99(4):1836-45. PubMed ID: 18272874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EEG activity during the verbal-cognitive stage of motor skill acquisition.
    Zhu FF; Maxwell JP; Hu Y; Zhang ZG; Lam WK; Poolton JM; Masters RS
    Biol Psychol; 2010 May; 84(2):221-7. PubMed ID: 20117168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinematic and myoelectric analysis of skill acquisition: I. 90cm subject group.
    Vorro J; Hobart D
    Arch Phys Med Rehabil; 1981 Nov; 62(11):575-82. PubMed ID: 7316715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The multifaceted nature of the relationship between performance and brain activity in motor sequence learning.
    Orban P; Peigneux P; Lungu O; Albouy G; Breton E; Laberenne F; Benali H; Maquet P; Doyon J
    Neuroimage; 2010 Jan; 49(1):694-702. PubMed ID: 19732838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined analysis of cortical (EEG) and nerve stump signals improves robotic hand control.
    Tombini M; Rigosa J; Zappasodi F; Porcaro C; Citi L; Carpaneto J; Rossini PM; Micera S
    Neurorehabil Neural Repair; 2012; 26(3):275-81. PubMed ID: 21730360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptation to constant-magnitude assistive forces: kinematic and neural correlates.
    Novakovic V; Sanguineti V
    Exp Brain Res; 2011 Mar; 209(3):425-36. PubMed ID: 21305377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human adaptation to interaction forces in visuo-motor coordination.
    Huang FC; Gillespie RB; Kuo AD
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):390-7. PubMed ID: 17009499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of task practice order on motor skill learning in adults with Parkinson disease: a pilot study.
    Lin CH; Sullivan KJ; Wu AD; Kantak S; Winstein CJ
    Phys Ther; 2007 Sep; 87(9):1120-31. PubMed ID: 17609332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-task interference during initial learning of a new motor task results from competition for the same brain areas.
    Rémy F; Wenderoth N; Lipkens K; Swinnen SP
    Neuropsychologia; 2010 Jul; 48(9):2517-27. PubMed ID: 20434467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.