These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 22275688)

  • 1. Subject-specific lower limb waveforms planning via artificial neural network.
    Luu TP; Lim HB; Qu X; Hoon KH; Low KH
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975491. PubMed ID: 22275688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An individual-specific gait pattern prediction model based on generalized regression neural networks.
    Luu TP; Low KH; Qu X; Lim HB; Hoon KH
    Gait Posture; 2014; 39(1):443-8. PubMed ID: 24071020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A single bout of resistance exercise does not affect nonlinear dynamics of lower extremity kinematics during treadmill walking.
    Nessler JA; Huynh H; McDougal M
    Gait Posture; 2011 Jun; 34(2):285-7. PubMed ID: 21570292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model Predictive Control-based gait pattern generation for wearable exoskeletons.
    Wang L; van Asseldonk EH; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975442. PubMed ID: 22275642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinematic trajectories while walking within the Lokomat robotic gait-orthosis.
    Hidler J; Wisman W; Neckel N
    Clin Biomech (Bristol, Avon); 2008 Dec; 23(10):1251-9. PubMed ID: 18849098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gait quality assessment using self-organising artificial neural networks.
    Barton G; Lisboa P; Lees A; Attfield S
    Gait Posture; 2007 Mar; 25(3):374-9. PubMed ID: 16784857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new approach for quantitative analysis of inter-joint coordination during gait.
    Dejnabadi H; Jolles BM; Aminian K
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):755-64. PubMed ID: 18270014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive locomotor training on an end-effector gait robot: evaluation of the ground reaction forces in different training conditions.
    Tomelleri C; Waldner A; Werner C; Hesse S
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975492. PubMed ID: 22275689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterns of muscle coordination vary with stride frequency during weight assisted treadmill walking.
    Klarner T; Chan HK; Wakeling JM; Lam T
    Gait Posture; 2010 Mar; 31(3):360-5. PubMed ID: 20097076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction methods to account for the effect of gait speed on lower limb angular kinematics.
    Hanlon M; Anderson R
    Gait Posture; 2006 Nov; 24(3):280-7. PubMed ID: 16311035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Velocity-dependent reference trajectory generation for the LOPES gait training robot.
    Tufekciler N; van Asseldonk EH; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975414. PubMed ID: 22275617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of ground reaction forces during gait based on kinematics and a neural network model.
    Oh SE; Choi A; Mun JH
    J Biomech; 2013 Sep; 46(14):2372-80. PubMed ID: 23962528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alternative modelling procedures for pelvic marker occlusion during motion analysis.
    McClelland JA; Webster KE; Grant C; Feller J
    Gait Posture; 2010 Apr; 31(4):415-9. PubMed ID: 20176486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of cadence regulation on muscle activation patterns during robot assisted gait: a dynamic simulation study.
    Hussain S; Xie SQ; Jamwal PK
    IEEE J Biomed Health Inform; 2013 Mar; 17(2):442-51. PubMed ID: 23193249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gait synchronized force modulation during the stance period of one limb achieved by an active partial body weight support system.
    Franz JR; Riley PO; Dicharry J; Allaire PE; Kerrigan DC
    J Biomech; 2008 Nov; 41(15):3116-20. PubMed ID: 18986653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional kinematics of the lower limbs in hip osteoarthritis during walking.
    Ornetti P; Laroche D; Morisset C; Beis JN; Tavernier C; Maillefert JF
    J Back Musculoskelet Rehabil; 2011; 24(4):201-8. PubMed ID: 22142708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic electromyography. I. Numerical representation using principal component analysis.
    Wootten ME; Kadaba MP; Cochran GV
    J Orthop Res; 1990 Mar; 8(2):247-58. PubMed ID: 2303958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural network-based prediction of missing key features in vertical GRF-time recordings.
    Begg RK
    J Med Eng Technol; 2006; 30(5):315-22. PubMed ID: 16980287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A three-dimensional kinematic and dynamic study of the lower limb during the stance phase of gait using an homogeneous matrix approach.
    Doriot N; Chèze L
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):21-7. PubMed ID: 14723490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing the number of gait trial recordings maximises intra-rater reliability of the CODA motion analysis system.
    Monaghan K; Delahunt E; Caulfield B
    Gait Posture; 2007 Feb; 25(2):303-15. PubMed ID: 16730177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.