These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 22275689)
1. Adaptive locomotor training on an end-effector gait robot: evaluation of the ground reaction forces in different training conditions. Tomelleri C; Waldner A; Werner C; Hesse S IEEE Int Conf Rehabil Robot; 2011; 2011():5975492. PubMed ID: 22275689 [TBL] [Abstract][Full Text] [Related]
2. Level of participation in robotic-assisted treadmill walking modulates midline sensorimotor EEG rhythms in able-bodied subjects. Wagner J; Solis-Escalante T; Grieshofer P; Neuper C; Müller-Putz G; Scherer R Neuroimage; 2012 Nov; 63(3):1203-11. PubMed ID: 22906791 [TBL] [Abstract][Full Text] [Related]
3. Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. Hesse S; Waldner A; Tomelleri C J Neuroeng Rehabil; 2010 Jun; 7():30. PubMed ID: 20584307 [TBL] [Abstract][Full Text] [Related]
4. Kinematic trajectories while walking within the Lokomat robotic gait-orthosis. Hidler J; Wisman W; Neckel N Clin Biomech (Bristol); 2008 Dec; 23(10):1251-9. PubMed ID: 18849098 [TBL] [Abstract][Full Text] [Related]
5. Adaptive position anticipation in a support robot for overground gait training enhances transparency. Everarts C; Vallery H; Bolliger M; Ronsse R IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650483. PubMed ID: 24187300 [TBL] [Abstract][Full Text] [Related]
6. An accelerometry-based comparison of 2 robotic assistive devices for treadmill training of gait. Regnaux JP; Saremi K; Marehbian J; Bussel B; Dobkin BH Neurorehabil Neural Repair; 2008; 22(4):348-54. PubMed ID: 18073325 [TBL] [Abstract][Full Text] [Related]
7. Muscle coordination in healthy subjects during floor walking and stair climbing in robot assisted gait training. Hussein S; Schmidt H; Volkmar M; Werner C; Helmich I; Piorko F; Krüger J; Hesse S Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1961-4. PubMed ID: 19163075 [TBL] [Abstract][Full Text] [Related]
8. Multidirectional transparent support for overground gait training. Vallery H; Lutz P; von Zitzewitz J; Rauter G; Fritschi M; Everarts C; Ronsse R; Curt A; Bolliger M IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650512. PubMed ID: 24187327 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of robot-assisted gait training using integrated biofeedback in neurologic disorders. Stoller O; Waser M; Stammler L; Schuster C Gait Posture; 2012 Apr; 35(4):595-600. PubMed ID: 22209566 [TBL] [Abstract][Full Text] [Related]
10. Velocity-dependent reference trajectory generation for the LOPES gait training robot. Tufekciler N; van Asseldonk EH; van der Kooij H IEEE Int Conf Rehabil Robot; 2011; 2011():5975414. PubMed ID: 22275617 [TBL] [Abstract][Full Text] [Related]
11. A cable-driven locomotor training system for restoration of gait in human SCI. Wu M; Hornby TG; Landry JM; Roth H; Schmit BD Gait Posture; 2011 Feb; 33(2):256-60. PubMed ID: 21232961 [TBL] [Abstract][Full Text] [Related]
12. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits. Au S; Berniker M; Herr H Neural Netw; 2008 May; 21(4):654-66. PubMed ID: 18499394 [TBL] [Abstract][Full Text] [Related]
13. The influence of body weight support on ankle mechanics during treadmill walking. Lewek MD J Biomech; 2011 Jan; 44(1):128-33. PubMed ID: 20855074 [TBL] [Abstract][Full Text] [Related]
14. A novel method for automatic treadmill speed adaptation. von Zitzewitz J; Bernhardt M; Riener R IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):401-9. PubMed ID: 17894272 [TBL] [Abstract][Full Text] [Related]
16. A reflexive neural network for dynamic biped walking control. Geng T; Porr B; Wörgötter F Neural Comput; 2006 May; 18(5):1156-96. PubMed ID: 16595061 [TBL] [Abstract][Full Text] [Related]
17. Gait analysis using a force-measuring gangway: intrasession repeatability in healthy adults. Veilleux LN; Robert M; Ballaz L; Lemay M; Rauch F J Musculoskelet Neuronal Interact; 2011 Mar; 11(1):27-33. PubMed ID: 21364272 [TBL] [Abstract][Full Text] [Related]
18. Improving the transparency of a rehabilitation robot by exploiting the cyclic behaviour of walking. van Dijk W; van der Kooij H; Koopman B; van Asseldonk EH; van der Kooij H IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650393. PubMed ID: 24187212 [TBL] [Abstract][Full Text] [Related]
19. Cortical and spinal excitability changes after robotic gait training in healthy participants. Blicher JU; Nielsen JF Neurorehabil Neural Repair; 2009 Feb; 23(2):143-9. PubMed ID: 19047360 [TBL] [Abstract][Full Text] [Related]
20. Robotic-assisted step training (lokomat) not superior to equal intensity of over-ground rehabilitation in patients with multiple sclerosis. Vaney C; Gattlen B; Lugon-Moulin V; Meichtry A; Hausammann R; Foinant D; Anchisi-Bellwald AM; Palaci C; Hilfiker R Neurorehabil Neural Repair; 2012; 26(3):212-21. PubMed ID: 22140197 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]