BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 22275697)

  • 21. Training of reaching in stroke survivors with severe and chronic upper limb paresis using a novel nonrobotic device: a randomized clinical trial.
    Barker RN; Brauer SG; Carson RG
    Stroke; 2008 Jun; 39(6):1800-7. PubMed ID: 18403742
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of robot-aided bilateral force-induced isokinetic arm training combined with conventional rehabilitation on arm motor function in patients with chronic stroke.
    Chang JJ; Tung WL; Wu WL; Huang MH; Su FC
    Arch Phys Med Rehabil; 2007 Oct; 88(10):1332-8. PubMed ID: 17908578
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Short-term effects of practice with trunk restraint on reaching movements in patients with chronic stroke: a controlled trial.
    Michaelsen SM; Levin MF
    Stroke; 2004 Aug; 35(8):1914-9. PubMed ID: 15192250
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel robotic system for quantifying arm kinematics and kinetics: description and evaluation in therapist-assisted passive arm movements post-stroke.
    Culmer PR; Jackson AE; Makower SG; Cozens JA; Levesley MC; Mon-Williams M; Bhakta B
    J Neurosci Methods; 2011 Apr; 197(2):259-69. PubMed ID: 21414360
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Taking a lesson from patients' recovery strategies to optimize training during robot-aided rehabilitation.
    Colombo R; Sterpi I; Mazzone A; Delconte C; Pisano F
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):276-85. PubMed ID: 22623406
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantifying kinematics of purposeful movements to real, imagined, or absent functional objects: implications for modelling trajectories for robot-assisted ADL tasks.
    Wisneski KJ; Johnson MJ
    J Neuroeng Rehabil; 2007 Mar; 4():7. PubMed ID: 17381842
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Task-specific training with trunk restraint on arm recovery in stroke: randomized control trial.
    Michaelsen SM; Dannenbaum R; Levin MF
    Stroke; 2006 Jan; 37(1):186-92. PubMed ID: 16339469
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation.
    Ho NS; Tong KY; Hu XL; Fung KL; Wei XJ; Rong W; Susanto EA
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975340. PubMed ID: 22275545
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using the Kinect to limit abnormal kinematics and compensation strategies during therapy with end effector robots.
    Brokaw EB; Lum PS; Cooper RA; Brewer BR
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650384. PubMed ID: 24187203
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robotic-assisted rehabilitation of the upper limb after acute stroke.
    Masiero S; Celia A; Rosati G; Armani M
    Arch Phys Med Rehabil; 2007 Feb; 88(2):142-9. PubMed ID: 17270510
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment.
    Sanchez RJ; Liu J; Rao S; Shah P; Smith R; Rahman T; Cramer SC; Bobrow JE; Reinkensmeyer DJ
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):378-89. PubMed ID: 17009498
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Robotic technologies and rehabilitation: new tools for upper-limb therapy and assessment in chronic stroke.
    Zollo L; Gallotta E; Guglielmelli E; Sterzi S
    Eur J Phys Rehabil Med; 2011 Jun; 47(2):223-36. PubMed ID: 21445028
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Shoulder mechanism design of an exoskeleton robot for stroke patient rehabilitation.
    Koo D; Chang PH; Sohn MK; Shin JH
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975505. PubMed ID: 22275701
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial.
    Klamroth-Marganska V; Blanco J; Campen K; Curt A; Dietz V; Ettlin T; Felder M; Fellinghauer B; Guidali M; Kollmar A; Luft A; Nef T; Schuster-Amft C; Stahel W; Riener R
    Lancet Neurol; 2014 Feb; 13(2):159-66. PubMed ID: 24382580
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Toward minimum effort reaching trajectories formation in robot-based rehabilitation after stroke: an innovative guidance scheme proposition.
    Zadravec M; Matjačić Z
    Int J Rehabil Res; 2014 Sep; 37(3):256-66. PubMed ID: 24871905
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Robotic therapy provides a stimulus for upper limb motor recovery after stroke that is complementary to and distinct from conventional therapy.
    Brokaw EB; Nichols D; Holley RJ; Lum PS
    Neurorehabil Neural Repair; 2014 May; 28(4):367-76. PubMed ID: 24297763
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pulsed assistance: a new paradigm of robot training.
    De Santis D; Masia L; Morasso P; Squeri V; Zenzeri J; Casadio M; Riva A
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650504. PubMed ID: 24187319
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A wearable robotic knee orthosis for gait training: a case-series of hemiparetic stroke survivors.
    Wong CK; Bishop L; Stein J
    Prosthet Orthot Int; 2012 Mar; 36(1):113-20. PubMed ID: 22082495
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tracking motor improvement at the subtask level during robot-aided neurorehabilitation of stroke patients.
    Panarese A; Colombo R; Sterpi I; Pisano F; Micera S
    Neurorehabil Neural Repair; 2012 Sep; 26(7):822-33. PubMed ID: 22374174
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot.
    Hu XL; Tong KY; Wei XJ; Rong W; Susanto EA; Ho SK
    J Electromyogr Kinesiol; 2013 Oct; 23(5):1065-74. PubMed ID: 23932795
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.