BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 22275704)

  • 1. Symmetry modes and stiffnesses for bimanual rehabilitation.
    McAmis S; Reed KB
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975508. PubMed ID: 22275704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and analysis of a compliant bimanual rehabilitation device.
    McAmis S; Reed KB
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650456. PubMed ID: 24187273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of bimanual-coordinated training supported by a new upper-limb rehabilitation robot: a near-infrared spectroscopy study.
    Li C; Inoue Y; Liu T; Sun L
    Disabil Rehabil Assist Technol; 2013 Jan; 8(1):38-48. PubMed ID: 22471649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous Perception of Forces and Motions Using Bimanual Interactions.
    McAmis SH; Reed KB
    IEEE Trans Haptics; 2012; 5(3):220-30. PubMed ID: 26964108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A survey on bimanual haptic interaction.
    Talvas A; Marchal M; Lecuyer A
    IEEE Trans Haptics; 2014; 7(3):285-300. PubMed ID: 25248213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Are two hands (from different people) better than one? Mode effects and differential transfer between manual coordination modes.
    Gorman JC; Crites MJ
    Hum Factors; 2013 Aug; 55(4):815-29. PubMed ID: 23964420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.
    Rong W; Tong KY; Hu XL; Ho SK
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical organisation of neuro-anatomical constraints in interlimb coordination.
    Riek S; Woolley D
    Hum Mov Sci; 2005; 24(5-6):798-814. PubMed ID: 16330121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An assessment of robot-assisted bimanual movements on upper limb motor coordination following stroke.
    Lewis GN; Perreault EJ
    IEEE Trans Neural Syst Rehabil Eng; 2009 Dec; 17(6):595-604. PubMed ID: 19666342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of interlimb and intralimb constraints on bimanual shoulder-elbow and shoulder-wrist coordination patterns.
    Li Y; Levin O; Forner-Cordero A; Swinnen SP
    J Neurophysiol; 2005 Sep; 94(3):2139-49. PubMed ID: 15928058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constraining upper limb synergies of hemiparetic patients using a robotic exoskeleton in the perspective of neuro-rehabilitation.
    Crocher V; Sahbani A; Robertson J; Roby-Brami A; Morel G
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):247-57. PubMed ID: 22481836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unimanual and bimanual weight perception of virtual objects with a new multi-finger haptic interface.
    Giachritsis CD; Ferre M; Barrio J; Wing AM
    Brain Res Bull; 2011 Jun; 85(5):271-5. PubMed ID: 21600271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Visual Information on Dominant and Non-dominant Hands During Bimanual Drawing with a Robotic Platform.
    Nouredanesh M; Frazer M; Tung J; Jeon S; Arami A
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1221-1226. PubMed ID: 31374796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-frequency repetitive TMS plus anodal transcranial DCS prevents transient decline in bimanual movement induced by contralesional inhibitory rTMS after stroke.
    Takeuchi N; Tada T; Matsuo Y; Ikoma K
    Neurorehabil Neural Repair; 2012 Oct; 26(8):988-98. PubMed ID: 22412170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time Independent Functional task Training: a case study on the effect of inter-joint coordination driven haptic guidance in stroke therapy.
    Brokaw EB; Murray TM; Nef T; Lum PS; Brokaw EB; Nichols D; Holley RJ
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975501. PubMed ID: 22275697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coordination of complex bimanual multijoint movements under increasing cycling frequencies: the prevalence of mirror-image and translational symmetry.
    Li Y; Levin O; Forner-Cordero A; Ronsse R; Swinnen SP
    Acta Psychol (Amst); 2009 Mar; 130(3):183-95. PubMed ID: 19166988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-stroke wrist rehabilitation assisted with an intention-driven functional electrical stimulation (FES)-robot system.
    Hu XL; Tong KY; Li R; Chen M; Xue JJ; Ho SK; Chen PN
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975424. PubMed ID: 22275625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using the Kinect to limit abnormal kinematics and compensation strategies during therapy with end effector robots.
    Brokaw EB; Lum PS; Cooper RA; Brewer BR
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650384. PubMed ID: 24187203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of joint space and end point space robotic training modalities for rehabilitation of interjoint coordination in individuals with moderate to severe impairment from chronic stroke.
    Brokaw EB; Holley RJ; Lum PS
    IEEE Trans Neural Syst Rehabil Eng; 2013 Sep; 21(5):787-95. PubMed ID: 23314781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of reaching kinematics during mirror and parallel robot assisted movements.
    Kadivar Z; Sung C; Thompson Z; O'Malley M; Liebschner M; Deng Z
    Stud Health Technol Inform; 2011; 163():247-53. PubMed ID: 21335798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.