These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 22275704)

  • 21. Bimanual shoulder flexion system with surface electromyography for hemiplegic patients after stroke: A preliminary study.
    Park K; Kwon S; Kim J; Rim B
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975388. PubMed ID: 22275592
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bimanual coordination with three hands: is the mirror hand of any help?
    Metral M; Guinot M; Bresciani JP; Luyat M; Roulin JL; Guerraz M
    Neuropsychologia; 2014 Jan; 52():11-8. PubMed ID: 24215820
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Patient adaptive control of end-effector based gait rehabilitation devices using a haptic control framework.
    Hussein S; Kruger J
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975451. PubMed ID: 22275649
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Robot therapy for stroke survivors: proprioceptive training and regulation of assistance.
    Sanguineti V; Casadio M; Vergaro E; Squeri V; Giannoni P; Morasso PG
    Stud Health Technol Inform; 2009; 145():126-42. PubMed ID: 19592791
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of hand orientation on bimanual finger coordination in an eight-finger tapping task.
    Kirsch W; Kunde W
    Hum Mov Sci; 2012 Dec; 31(6):1399-408. PubMed ID: 23159443
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Robotic approaches for rehabilitation of hand function after stroke.
    Lum PS; Godfrey SB; Brokaw EB; Holley RJ; Nichols D
    Am J Phys Med Rehabil; 2012 Nov; 91(11 Suppl 3):S242-54. PubMed ID: 23080040
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ShouldeRO, an alignment-free two-DOF rehabilitation robot for the shoulder complex.
    Dehez B; Sapin J
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975339. PubMed ID: 22275544
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inter-hemispheric coupling changes associate with motor improvements after robotic stroke rehabilitation.
    Pellegrino G; Tomasevic L; Tombini M; Assenza G; Bravi M; Sterzi S; Giacobbe V; Zollo L; Guglielmelli E; Cavallo G; Vernieri F; Tecchio F
    Restor Neurol Neurosci; 2012; 30(6):497-510. PubMed ID: 22868224
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Increased visual information gain improves bimanual force coordination.
    Bhullar A; Kang N; Idica J; Christou EA; Cauraugh JH
    Neurosci Lett; 2015 Nov; 608():23-7. PubMed ID: 26455961
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wrist-RoboHab: a robot for treatment and evaluation of brain injury patients.
    Baniasad MA; Farahmand M; Ansari NN
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975506. PubMed ID: 22275702
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Upper limb stroke rehabilitation: the effectiveness of Stimulation Assistance through Iterative Learning (SAIL).
    Meadmore KL; Cai Z; Tong D; Hughes AM; Freeman CT; Rogers E; Burridge JH
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975502. PubMed ID: 22275698
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrating proprioceptive assessment with proprioceptive training of stroke patients.
    Squeri V; Zenzeri J; Morasso P; Basteris A
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975500. PubMed ID: 22275696
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Independent on-line control of the two hands during bimanual reaching.
    Diedrichsen J; Nambisan R; Kennerley SW; Ivry RB
    Eur J Neurosci; 2004 Mar; 19(6):1643-52. PubMed ID: 15066160
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The use of (symmetry) group theory as a predictive tool for studying bimanual coordination.
    Mulvey GM; Amazeen PG; Riley MA
    J Mot Behav; 2005 Jul; 37(4):295-309. PubMed ID: 15967755
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke.
    Hu XL; Tong KY; Song R; Zheng XJ; Leung WW
    Neurorehabil Neural Repair; 2009 Oct; 23(8):837-46. PubMed ID: 19531605
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A feasibility study of the effect of multichannel electrical stimulation and gravity compensation on hand function in stroke patients: a pilot study.
    Krabben T; Buurke JH; Prange GB; Rietman JS
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650370. PubMed ID: 24187189
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Haptic tracking permits bimanual independence.
    Rosenbaum DA; Dawson AM; Challis JH
    J Exp Psychol Hum Percept Perform; 2006 Oct; 32(5):1266-75. PubMed ID: 17002536
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation by Expert Dancers of a Robot That Performs Partnered Stepping via Haptic Interaction.
    Chen TL; Bhattacharjee T; McKay JL; Borinski JE; Hackney ME; Ting LH; Kemp CC
    PLoS One; 2015; 10(5):e0125179. PubMed ID: 25993099
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A small-scale robotic manipulandum for motor training in stroke rats.
    Vigaru B; Lambercy O; Graber L; Fluit R; Wespe P; Schubring-Giese M; Luft A; Gassert R
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975349. PubMed ID: 22275553
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bimanual training after stroke: are two hands better than one?
    Rose DK; Winstein CJ
    Top Stroke Rehabil; 2004; 11(4):20-30. PubMed ID: 15592987
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.