These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
75 related articles for article (PubMed ID: 22275705)
1. A tailored exercise of manipulation of virtual tools to treat upper limb impairment in Multiple Sclerosis. Basteris A; De Luca A; Sanguineti V; Solaro C; Mueller M; Carpinella I; Cattaneo D; Bertoni R; Ferrarin M IEEE Int Conf Rehabil Robot; 2011; 2011():5975509. PubMed ID: 22275705 [TBL] [Abstract][Full Text] [Related]
2. Robot training of upper limb in multiple sclerosis: comparing protocols with or without manipulative task components. Carpinella I; Cattaneo D; Bertoni R; Ferrarin M IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):351-60. PubMed ID: 22623407 [TBL] [Abstract][Full Text] [Related]
3. Robot-based rehabilitation of the upper limbs in multiple sclerosis: feasibility and preliminary results. Carpinella I; Cattaneo D; Abuarqub S; Ferrarin M J Rehabil Med; 2009 Nov; 41(12):966-70. PubMed ID: 19841825 [TBL] [Abstract][Full Text] [Related]
4. What's new in new technologies for upper extremity rehabilitation? Brochard S; Robertson J; Médée B; Rémy-Néris O Curr Opin Neurol; 2010 Dec; 23(6):683-7. PubMed ID: 20852420 [TBL] [Abstract][Full Text] [Related]
5. Haptic vs sensorimotor training in the treatment of upper limb dysfunction in multiple sclerosis: A multi-center, randomised controlled trial. Solaro C; Cattaneo D; Basteris A; Carpinella I; De Luca A; Mueller M; Bertoni R; Ferrarin M; Sanguineti V J Neurol Sci; 2020 May; 412():116743. PubMed ID: 32145522 [TBL] [Abstract][Full Text] [Related]
6. Feasibility and efficacy of upper limb robotic rehabilitation in a subacute cervical spinal cord injury population. Zariffa J; Kapadia N; Kramer JL; Taylor P; Alizadeh-Meghrazi M; Zivanovic V; Willms R; Townson A; Curt A; Popovic MR; Steeves JD Spinal Cord; 2012 Mar; 50(3):220-6. PubMed ID: 21912402 [TBL] [Abstract][Full Text] [Related]
7. Improving gait in multiple sclerosis using robot-assisted, body weight supported treadmill training. Lo AC; Triche EW Neurorehabil Neural Repair; 2008; 22(6):661-71. PubMed ID: 18971381 [TBL] [Abstract][Full Text] [Related]
8. Effector force requirements to enable robotic systems to provide assisted exercise in people with upper limb impairment after stroke. Jackson AE; Culmer PR; Levesley MC; Cozens JA; Makower SG; Bhakta BB IEEE Int Conf Rehabil Robot; 2011; 2011():5975391. PubMed ID: 22275595 [TBL] [Abstract][Full Text] [Related]
9. Beyond therapists: Technology-aided physical MS rehabilitation delivery. Feys P; Straudi S Mult Scler; 2019 Sep; 25(10):1387-1393. PubMed ID: 31469352 [TBL] [Abstract][Full Text] [Related]
10. The Armeo Spring as training tool to improve upper limb functionality in multiple sclerosis: a pilot study. Gijbels D; Lamers I; Kerkhofs L; Alders G; Knippenberg E; Feys P J Neuroeng Rehabil; 2011 Jan; 8():5. PubMed ID: 21261965 [TBL] [Abstract][Full Text] [Related]
11. Post-stroke robotic training of the upper limb in the early rehabilitation phase. Masiero S; Rosati G; Valarini S; Rossi A Funct Neurol; 2009; 24(4):203-6. PubMed ID: 20412726 [TBL] [Abstract][Full Text] [Related]
12. Robotic-assisted step training (lokomat) not superior to equal intensity of over-ground rehabilitation in patients with multiple sclerosis. Vaney C; Gattlen B; Lugon-Moulin V; Meichtry A; Hausammann R; Foinant D; Anchisi-Bellwald AM; Palaci C; Hilfiker R Neurorehabil Neural Repair; 2012; 26(3):212-21. PubMed ID: 22140197 [TBL] [Abstract][Full Text] [Related]
13. Symmetry-based resistance as a novel means of lower limb rehabilitation. Simon AM; Brent Gillespie R; Ferris DP J Biomech; 2007; 40(6):1286-92. PubMed ID: 16843472 [TBL] [Abstract][Full Text] [Related]
14. Rehabilitation for hemiplegia using an upper limb training system based on a force direction. Ogata K; Hirabayashi Y; Kubota K; Hasegawa Y; Tsuji T IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():533-538. PubMed ID: 28813875 [TBL] [Abstract][Full Text] [Related]
15. Upper limb motor training based on task-oriented exercises induces functional brain reorganization in patients with multiple sclerosis. Bonzano L; Pedullà L; Tacchino A; Brichetto G; Battaglia MA; Mancardi GL; Bove M Neuroscience; 2019 Jul; 410():150-159. PubMed ID: 31085282 [TBL] [Abstract][Full Text] [Related]
16. Rehabilitation and multiple sclerosis: hot topics in the preservation of physical functioning. Dalgas U J Neurol Sci; 2011 Dec; 311 Suppl 1():S43-7. PubMed ID: 22206766 [TBL] [Abstract][Full Text] [Related]
17. Robotic training and kinematic analysis of arm and hand after incomplete spinal cord injury: a case study. Kadivar Z; Sullivan JL; Eng DP; Pehlivan AU; O'Malley MK; Yozbatiran N; Francisco GE IEEE Int Conf Rehabil Robot; 2011; 2011():5975429. PubMed ID: 22275630 [TBL] [Abstract][Full Text] [Related]
18. Effect of a robotic rehabilitation device on upper limb function in a sub-acute cervical spinal cord injury population. Zariffa J; Kapadia N; Kramer JL; Taylor P; Alizadeh-Meghrazi M; Zivanovic V; Willms R; Townson A; Curt A; Popovic MR; Steeves JD IEEE Int Conf Rehabil Robot; 2011; 2011():5975400. PubMed ID: 22275603 [TBL] [Abstract][Full Text] [Related]
19. An assessment of robot-assisted bimanual movements on upper limb motor coordination following stroke. Lewis GN; Perreault EJ IEEE Trans Neural Syst Rehabil Eng; 2009 Dec; 17(6):595-604. PubMed ID: 19666342 [TBL] [Abstract][Full Text] [Related]
20. Task difficulty adjustment in biocooperative rehabilitation using psychophysiological responses. Novak D; Mihelj M; Ziherl J; Olenšek A; Munih M IEEE Int Conf Rehabil Robot; 2011; 2011():5975380. PubMed ID: 22275584 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]