BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 22275708)

  • 1. Design and implementation of a training strategy in chronic stroke with an arm robotic exoskeleton.
    Frisoli A; Sotgiu E; Procopio C; Bergamasco M; Rossi B; Chisari C
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975512. PubMed ID: 22275708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robotic assisted rehabilitation in Virtual Reality with the L-EXOS.
    Frisoli A; Bergamasco M; Carboncini MC; Rossi B
    Stud Health Technol Inform; 2009; 145():40-54. PubMed ID: 19592785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment.
    Sanchez RJ; Liu J; Rao S; Shah P; Smith R; Rahman T; Cramer SC; Bobrow JE; Reinkensmeyer DJ
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):378-89. PubMed ID: 17009498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance-based robotic assistance during rhythmic arm exercises.
    Leconte P; Ronsse R
    J Neuroeng Rehabil; 2016 Sep; 13(1):82. PubMed ID: 27623806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fine finger motor skill training with exoskeleton robotic hand in chronic stroke: stroke rehabilitation.
    Ockenfeld C; Tong RK; Susanto EA; Ho SK; Hu XL
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650392. PubMed ID: 24187211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of arm training with the robotic device ARMin I in chronic stroke: three single cases.
    Nef T; Quinter G; Müller R; Riener R
    Neurodegener Dis; 2009; 6(5-6):240-51. PubMed ID: 19940461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of robot-aided bilateral force-induced isokinetic arm training combined with conventional rehabilitation on arm motor function in patients with chronic stroke.
    Chang JJ; Tung WL; Wu WL; Huang MH; Su FC
    Arch Phys Med Rehabil; 2007 Oct; 88(10):1332-8. PubMed ID: 17908578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Positive effects of robotic exoskeleton training of upper limb reaching movements after stroke.
    Frisoli A; Procopio C; Chisari C; Creatini I; Bonfiglio L; Bergamasco M; Rossi B; Carboncini MC
    J Neuroeng Rehabil; 2012 Jun; 9():36. PubMed ID: 22681653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis.
    Housman SJ; Scott KM; Reinkensmeyer DJ
    Neurorehabil Neural Repair; 2009 Jun; 23(5):505-14. PubMed ID: 19237734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robotic-assisted rehabilitation of the upper limb after acute stroke.
    Masiero S; Celia A; Rosati G; Armani M
    Arch Phys Med Rehabil; 2007 Feb; 88(2):142-9. PubMed ID: 17270510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robotic arm skate for stroke rehabilitation.
    Wong CK; Jordan K; King M
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975389. PubMed ID: 22275593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel robotic system for quantifying arm kinematics and kinetics: description and evaluation in therapist-assisted passive arm movements post-stroke.
    Culmer PR; Jackson AE; Makower SG; Cozens JA; Levesley MC; Mon-Williams M; Bhakta B
    J Neurosci Methods; 2011 Apr; 197(2):259-69. PubMed ID: 21414360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An EMG-Controlled Robotic Hand Exoskeleton for Bilateral Rehabilitation.
    Leonardis D; Barsotti M; Loconsole C; Solazzi M; Troncossi M; Mazzotti C; Castelli VP; Procopio C; Lamola G; Chisari C; Bergamasco M; Frisoli A
    IEEE Trans Haptics; 2015; 8(2):140-51. PubMed ID: 25838528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinematic data analysis for post-stroke patients following bilateral versus unilateral rehabilitation with an upper limb wearable robotic system.
    Kim H; Miller LM; Fedulow I; Simkins M; Abrams GM; Byl N; Rosen J
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):153-64. PubMed ID: 22855233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robotic technologies and rehabilitation: new tools for upper-limb therapy and assessment in chronic stroke.
    Zollo L; Gallotta E; Guglielmelli E; Sterzi S
    Eur J Phys Rehabil Med; 2011 Jun; 47(2):223-36. PubMed ID: 21445028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.
    Rong W; Tong KY; Hu XL; Ho SK
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assistive control system using continuous myoelectric signal in robot-aided arm training for patients after stroke.
    Song R; Tong KY; Hu X; Li L
    IEEE Trans Neural Syst Rehabil Eng; 2008 Aug; 16(4):371-9. PubMed ID: 18701384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of robot-assisted upper limb rehabilitation on daily function and real-world arm activity in patients with chronic stroke: a randomized controlled trial.
    Liao WW; Wu CY; Hsieh YW; Lin KC; Chang WY
    Clin Rehabil; 2012 Feb; 26(2):111-20. PubMed ID: 21840917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design & control of a 3D stroke rehabilitation platform.
    Cai Z; Tong D; Meadmore KL; Freeman CT; Hughes AM; Rogers E; Burridge JH
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975412. PubMed ID: 22275615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.