These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 22275830)
1. How can micelle systems be rebuilt by a heating process? Silva-Filho MA; Siqueira SD; Freire LB; Araújo IB; Holanda e Silva KG; Medeiros Ada C; Araújo-Filho I; Oliveira AG; Egito ES Int J Nanomedicine; 2012; 7():141-50. PubMed ID: 22275830 [TBL] [Abstract][Full Text] [Related]
2. Influence of the freeze-drying process on the physicochemical and biological properties of pre-heated amphotericin B micellar systems. Siqueira SD; Silva-Filho MA; Silva CA; Araújo IB; Silva AE; Fernandes-Pedrosa MF; Oliveira AG; Egito ES AAPS PharmSciTech; 2014 Jun; 15(3):612-9. PubMed ID: 24510525 [TBL] [Abstract][Full Text] [Related]
3. Decrease in Fungizone toxicity induced by the use of Lipofundin as a dilutent: an in vitro study. de Araújo IB; Damasceno BP; de Medeiros TM; Soares LA; do Egito ES Curr Drug Deliv; 2005 Apr; 2(2):199-205. PubMed ID: 16305421 [TBL] [Abstract][Full Text] [Related]
4. Heat-induced reformulation of amphotericin B-deoxycholate favours drug uptake by the macrophage-like cell line J774. Chéron M; Petit C; Bolard J; Gaboriau F J Antimicrob Chemother; 2003 Dec; 52(6):904-10. PubMed ID: 14613963 [TBL] [Abstract][Full Text] [Related]
5. Mild heating of amphotericin B-desoxycholate: effects on ultrastructure, in vitro activity and toxicity, and therapeutic efficacy in severe candidiasis in leukopenic mice. van Etten EW; van Vianen W; Roovers P; Frederik P Antimicrob Agents Chemother; 2000 Jun; 44(6):1598-603. PubMed ID: 10817715 [TBL] [Abstract][Full Text] [Related]
6. Efficacy and toxicity evaluation of new amphotericin B micelle systems for brain fungal infections. Moreno-Rodríguez AC; Torrado-Durán S; Molero G; García-Rodríguez JJ; Torrado-Santiago S Int J Pharm; 2015 Oct; 494(1):17-22. PubMed ID: 26256151 [TBL] [Abstract][Full Text] [Related]
7. In-vivo therapeutic efficacy in experimental murine mycoses of a new formulation of deoxycholate-amphotericin B obtained by mild heating. Petit C; Chéron M; Joly V; Rodrigues JM; Bolard J; Gaboriau F J Antimicrob Chemother; 1998 Dec; 42(6):779-85. PubMed ID: 10052902 [TBL] [Abstract][Full Text] [Related]
8. Supramolecular Chitosan Micro-Platelets Synergistically Enhance Anti-Candida albicans Activity of Amphotericin B Using an Immunocompetent Murine Model. Grisin T; Bories C; Bombardi M; Loiseau PM; Rouffiac V; Solgadi A; Mallet JM; Ponchel G; Bouchemal K Pharm Res; 2017 May; 34(5):1067-1082. PubMed ID: 28168390 [TBL] [Abstract][Full Text] [Related]
9. Similarity between the in vitro activity and toxicity of two different Fungizone/Lipofundin admixtures. Araújo IB; Brito CR; Urbano IA; Dominici VA; Silva Filho MA; Silveira WL; Damasceno BP; Medeiros AC; Egito ES Acta Cir Bras; 2005; 20 Suppl 1():257-61. PubMed ID: 16186987 [TBL] [Abstract][Full Text] [Related]
10. Heat-induced superaggregation of amphotericin B reduces its in vitro toxicity: a new way to improve its therapeutic index. Gaboriau F; Chéron M; Petit C; Bolard J Antimicrob Agents Chemother; 1997 Nov; 41(11):2345-51. PubMed ID: 9371331 [TBL] [Abstract][Full Text] [Related]
11. Water-soluble amphotericin B-polyvinylpyrrolidone complexes with maintained antifungal activity against Candida spp. and Aspergillus spp. and reduced haemolytic and cytotoxic effects. Charvalos E; Tzatzarakis MN; Van Bambeke F; Tulkens PM; Tsatsakis AM; Tzanakakis GN; Mingeot-Leclercq MP J Antimicrob Chemother; 2006 Feb; 57(2):236-44. PubMed ID: 16361329 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and evaluation of sodium deoxycholate sulfate as a lipid drug carrier to enhance the solubility, stability and safety of an amphotericin B inhalation formulation. Gangadhar KN; Adhikari K; Srichana T Int J Pharm; 2014 Aug; 471(1-2):430-8. PubMed ID: 24907597 [TBL] [Abstract][Full Text] [Related]
13. Pharmacologically Safe Nanomicelles of Amphotericin B With Lipids: Nuclear Magnetic Resonance and Molecular Docking Approach. Usman F; Ul-Haq Z; Khalil R; Tinpun K; Srichana T J Pharm Sci; 2017 Dec; 106(12):3574-3582. PubMed ID: 28847478 [TBL] [Abstract][Full Text] [Related]
14. The effect of surfactants on the aggregation state of amphotericin B. Tancrède P; Barwicz J; Jutras S; Gruda I Biochim Biophys Acta; 1990 Dec; 1030(2):289-95. PubMed ID: 2261490 [TBL] [Abstract][Full Text] [Related]
15. Disaggregation of amphotericin B by sodium deoxycholate micellar aggregates. Selvam S; Mishra AK J Photochem Photobiol B; 2008 Nov; 93(2):66-70. PubMed ID: 18725181 [TBL] [Abstract][Full Text] [Related]
16. Poly(L-lactide) Nanoparticles Reduce Amphotericin B Cytotoxicity and Maintain Its In Vitro Antifungal Activity. Casa DM; Carraro TC; de Camargo LE; Dalmolin LF; Khalil NM; Mainardes RM J Nanosci Nanotechnol; 2015 Jan; 15(1):848-54. PubMed ID: 26328449 [TBL] [Abstract][Full Text] [Related]
17. Biodegradable functional polycarbonate micelles for controlled release of amphotericin B. Wang Y; Ke X; Voo ZX; Yap SSL; Yang C; Gao S; Liu S; Venkataraman S; Obuobi SAO; Khara JS; Yang YY; Ee PLR Acta Biomater; 2016 Dec; 46():211-220. PubMed ID: 27686042 [TBL] [Abstract][Full Text] [Related]
18. Effects of lipid-based oral formulations on plasma and tissue amphotericin B concentrations and renal toxicity in male rats. Risovic V; Boyd M; Choo E; Wasan KM Antimicrob Agents Chemother; 2003 Oct; 47(10):3339-42. PubMed ID: 14506053 [TBL] [Abstract][Full Text] [Related]
19. Lipoamino acid-based micelles as promising delivery vehicles for monomeric amphotericin B. Serafim C; Ferreira I; Rijo P; Pinheiro L; Faustino C; Calado A; Garcia-Rio L Int J Pharm; 2016 Jan; 497(1-2):23-35. PubMed ID: 26617315 [TBL] [Abstract][Full Text] [Related]