BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 22276088)

  • 1. Three-dimensional fit-to-flow microfluidic assembly.
    Chen A; Pan T
    Biomicrofluidics; 2011 Dec; 5(4):46505-465059. PubMed ID: 22276088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fit-to-Flow (F2F) interconnects: universal reversible adhesive-free microfluidic adaptors for lab-on-a-chip systems.
    Chen A; Pan T
    Lab Chip; 2011 Feb; 11(4):727-32. PubMed ID: 21109877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A reconfigurable stick-n-play modular microfluidic system using magnetic interconnects.
    Yuen PK
    Lab Chip; 2016 Sep; 16(19):3700-3707. PubMed ID: 27722698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printed Lego
    Nie J; Gao Q; Qiu JJ; Sun M; Liu A; Shao L; Fu JZ; Zhao P; He Y
    Biofabrication; 2018 Mar; 10(3):035001. PubMed ID: 29417931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optofluidic Modular Blocks for On-Demand and Open-Source Prototyping of Microfluidic Systems.
    Lee Y; Kim B; Oh I; Choi S
    Small; 2018 Dec; 14(52):e1802769. PubMed ID: 30375722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Modular, Reconfigurable Microfabricated Assembly Platform for Microfluidic Transport and Multitype Cell Culture and Drug Testing.
    Xie X; Maharjan S; Liu S; Zhang YS; Livermore C
    Micromachines (Basel); 2019 Dec; 11(1):. PubMed ID: 31861298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Desktop aligner for fabrication of multilayer microfluidic devices.
    Li X; Yu ZT; Geraldo D; Weng S; Alve N; Dun W; Kini A; Patel K; Shu R; Zhang F; Li G; Jin Q; Fu J
    Rev Sci Instrum; 2015 Jul; 86(7):075008. PubMed ID: 26233409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D free-assembly modular microfluidics inspired by movable type printing.
    Huang S; Wu J; Zheng L; Long Y; Chen J; Li J; Dai B; Lin F; Zhuang S; Zhang D
    Microsyst Nanoeng; 2023; 9():111. PubMed ID: 37705925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and Fabrication of Low-Cost Microfluidic Chips and Microfluidic Routing System for Reconfigurable Multi-(Organ-on-a-Chip) Assembly.
    Abu-Dawas S; Alawami H; Zourob M; Ramadan Q
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Printed Reconfigurable Modular Microfluidic System for Generating Gel Microspheres.
    Chen X; Mo D; Gong M
    Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32098210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rubik's Cube as Reconfigurable Microfluidic Platform for Rapid Setup and Switching of Analytical Devices.
    Lai X; Sun Y; Yang M; Wu H
    Micromachines (Basel); 2022 Nov; 13(12):. PubMed ID: 36557355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Innovative 3D Microfluidic Tools for On-Chip Fluids and Particles Manipulation: From Design to Experimental Validation.
    Zoupanou S; Chiriacò MS; Tarantini I; Ferrara F
    Micromachines (Basel); 2021 Jan; 12(2):. PubMed ID: 33494413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of misalignment effects in microfluidic interconnects for modular bio-analytical chip applications.
    Rani SD; Park T; You BH; Soper SA; Murphy MC; Nikitopoulos DE
    Electrophoresis; 2013 Nov; 34(20-21):2988-95. PubMed ID: 23893860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic Packaging Integration with Electronic-Photonic Biosensors Using 3D Printed Transfer Molding.
    Adamopoulos C; Gharia A; Niknejad A; Stojanović V; Anwar M
    Biosensors (Basel); 2020 Nov; 10(11):. PubMed ID: 33202594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modular approach to fabrication of three-dimensional microchannel systems in PDMS-application to sheath flow microchips.
    Hofmann O; Niedermann P; Manz A
    Lab Chip; 2001 Dec; 1(2):108-14. PubMed ID: 15100869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D nanofabrication inside rapid prototyped microfluidic channels showcased by wet-spinning of single micrometre fibres.
    Lölsberg J; Linkhorst J; Cinar A; Jans A; Kuehne AJC; Wessling M
    Lab Chip; 2018 May; 18(9):1341-1348. PubMed ID: 29619449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plug-n-play microfluidic systems from flexible assembly of glass-based flow-control modules.
    Meng ZJ; Wang W; Liang X; Zheng WC; Deng NN; Xie R; Ju XJ; Liu Z; Chu LY
    Lab Chip; 2015 Apr; 15(8):1869-78. PubMed ID: 25711675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Modular µSiM Reconfigured: Integration of Microfluidic Capabilities to Study In Vitro Barrier Tissue Models under Flow.
    Mansouri M; Ahmed A; Ahmad SD; McCloskey MC; Joshi IM; Gaborski TR; Waugh RE; McGrath JL; Day SW; Abhyankar VV
    Adv Healthc Mater; 2022 Nov; 11(21):e2200802. PubMed ID: 35953453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leakage pressures for gasketless superhydrophobic fluid interconnects for modular lab-on-a-chip systems.
    Brown CR; Zhao X; Park T; Chen PC; You BH; Park DS; Soper SA; Baird A; Murphy MC
    Microsyst Nanoeng; 2021; 7():69. PubMed ID: 34567781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free-space parallel multichip interconnection system.
    Zheng X; Marchand PJ; Huang D; Esener SC
    Appl Opt; 2000 Jul; 39(20):3516-24. PubMed ID: 18349922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.