These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 22276088)

  • 21. Bio-functionalized silk hydrogel microfluidic systems.
    Zhao S; Chen Y; Partlow BP; Golding AS; Tseng P; Coburn J; Applegate MB; Moreau JE; Omenetto FG; Kaplan DL
    Biomaterials; 2016 Jul; 93():60-70. PubMed ID: 27077566
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Low-Cost 3-in-1 3D Printer as a Tool for the Fabrication of Flow-Through Channels of Microfluidic Systems.
    Thaweskulchai T; Schulte A
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442569
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic gasketless interconnects sealed by superhydrophobic surfaces.
    Zhao X; Park DS; Soper SA; Murphy MC
    J Microelectromech Syst; 2020 Oct; 29(5):894-899. PubMed ID: 33746475
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Guided and fluidic self-assembly of microstructures using railed microfluidic channels.
    Chung SE; Park W; Shin S; Lee SA; Kwon S
    Nat Mater; 2008 Jul; 7(7):581-7. PubMed ID: 18552850
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A vertical microfluidic probe.
    Kaigala GV; Lovchik RD; Drechsler U; Delamarche E
    Langmuir; 2011 May; 27(9):5686-93. PubMed ID: 21476506
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Rubik's microfluidic cube.
    Lai X; Shi Z; Pu Z; Zhang P; Zhang X; Yu H; Li D
    Microsyst Nanoeng; 2020; 6():27. PubMed ID: 34567642
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Reconfigurable Microfluidics Platform for Microparticle Separation and Fluid Mixing.
    Hahn YK; Hong D; Kang JH; Choi S
    Micromachines (Basel); 2016 Aug; 7(8):. PubMed ID: 30404310
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chitosan-mediated in situ biomolecule assembly in completely packaged microfluidic devices.
    Park JJ; Luo X; Yi H; Valentine TM; Payne GF; Bentley WE; Ghodssi R; Rubloff GW
    Lab Chip; 2006 Oct; 6(10):1315-21. PubMed ID: 17102845
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robust Microfabrication of Highly Parallelized Three-Dimensional Microfluidics on Silicon.
    Yadavali S; Lee D; Issadore D
    Sci Rep; 2019 Aug; 9(1):12213. PubMed ID: 31434933
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modular Microfluidics: Current Status and Future Prospects.
    Lai X; Yang M; Wu H; Li D
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014285
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heterogeneous Integration of CMOS Sensors and Fluidic Networks Using Wafer-Level Molding.
    Lindsay M; Bishop K; Sengupta S; Co M; Cumbie M; Chen CH; Johnston ML
    IEEE Trans Biomed Circuits Syst; 2018 Oct; 12(5):1046-1055. PubMed ID: 30010595
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D Printing Solutions for Microfluidic Chip-To-World Connections.
    van den Driesche S; Lucklum F; Bunge F; Vellekoop MJ
    Micromachines (Basel); 2018 Feb; 9(2):. PubMed ID: 30393347
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accurate, predictable, repeatable micro-assembly technology for polymer, microfluidic modules.
    Lee TY; Han K; Barrett DO; Park S; Soper SA; Murphy MC
    Sens Actuators B Chem; 2018 Jan; 254():1249-1258. PubMed ID: 29531428
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modular microfluidics for life sciences.
    Wu J; Fang H; Zhang J; Yan S
    J Nanobiotechnology; 2023 Mar; 21(1):85. PubMed ID: 36906553
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sticker Microfluidics: A Method for Fabrication of Customized Monolithic Microfluidics.
    Lai X; Lu B; Zhang P; Zhang X; Pu Z; Yu H; Li D
    ACS Biomater Sci Eng; 2019 Dec; 5(12):6801-6810. PubMed ID: 33423473
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-precision modular microfluidics by micromilling of interlocking injection-molded blocks.
    Owens CE; Hart AJ
    Lab Chip; 2018 Mar; 18(6):890-901. PubMed ID: 29372201
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three-dimensional fluidic self-assembly by axis translation of two-dimensionally fabricated microcomponents in railed microfluidics.
    Chung SE; Jung Y; Kwon S
    Small; 2011 Mar; 7(6):796-803. PubMed ID: 21322106
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Control and automation of multilayered integrated microfluidic device fabrication.
    Kipper S; Frolov L; Guy O; Pellach M; Glick Y; Malichi A; Knisbacher BA; Barbiro-Michaely E; Avrahami D; Yavets-Chen Y; Levanon EY; Gerber D
    Lab Chip; 2017 Jan; 17(3):557-566. PubMed ID: 28102868
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D microfluidics via cyclic olefin polymer-based in situ direct laser writing.
    Alsharhan AT; Acevedo R; Warren R; Sochol RD
    Lab Chip; 2019 Sep; 19(17):2799-2810. PubMed ID: 31334525
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.