BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 22276751)

  • 1. The dynamic cytoskeleton of the developing male germ cell.
    Sperry AO
    Biol Cell; 2012 May; 104(5):297-305. PubMed ID: 22276751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Haploid male germ cells-the Grand Central Station of protein transport.
    Pleuger C; Lehti MS; Dunleavy JE; Fietz D; O'Bryan MK
    Hum Reprod Update; 2020 Jun; 26(4):474-500. PubMed ID: 32318721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. KATNB1 is a master regulator of multiple katanin enzymes in male meiosis and haploid germ cell development.
    Dunleavy JEM; O'Connor AE; Okuda H; Merriner DJ; O'Bryan MK
    Development; 2021 Dec; 148(24):. PubMed ID: 34822718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manchette-acrosome disorders during spermiogenesis and low efficiency of seminiferous tubules in hypercholesterolemic rabbit model.
    Simón L; Funes AK; Yapur MA; Cabrillana ME; Monclus MA; Boarelli PV; Vincenti AE; Saez Lancellotti TE; Fornés MW
    PLoS One; 2017; 12(2):e0172994. PubMed ID: 28241054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The development and evolution of actin-containing organelles during spermiogenesis of a primitive nematode.
    Noury-Sraïri N; Gourbault N; Justine JL
    Biol Cell; 1993; 79(3):231-41. PubMed ID: 8004009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytoskeletal variations in an asymmetric cell division support diversity in nematode sperm size and sex ratios.
    Winter ES; Schwarz A; Fabig G; Feldman JL; Pires-daSilva A; Müller-Reichert T; Sadler PL; Shakes DC
    Development; 2017 Sep; 144(18):3253-3263. PubMed ID: 28827395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in actin distribution during sperm development in the opossum, Monodelphis domestica.
    Olson GE; Winfrey VP
    Anat Rec; 1991 Jun; 230(2):209-17. PubMed ID: 1867397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental association of the synaptic activity-regulated protein arc with the mouse acrosomal organelle and the sperm tail.
    Maier B; Medrano S; Sleight SB; Visconti PE; Scrable H
    Biol Reprod; 2003 Jan; 68(1):67-76. PubMed ID: 12493697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coordination of Actin- and Microtubule-Based Cytoskeletons Supports Transport of Spermatids and Residual Bodies/Phagosomes During Spermatogenesis in the Rat Testis.
    Tang EI; Lee WM; Cheng CY
    Endocrinology; 2016 Apr; 157(4):1644-59. PubMed ID: 26894662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rac1 is necessary for capacitation and acrosome reaction in guinea pig spermatozoa.
    Ramírez-Ramírez D; Salgado-Lucio ML; Roa-Espitia AL; Fierro R; González-Márquez H; Cordero-Martínez J; Hernández-González EO
    J Cell Biochem; 2020 Apr; 121(4):2864-2876. PubMed ID: 31692044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of microtubule (MT)-based cytoskeleton in the seminiferous epithelium during spermatogenesis.
    Tang EI; Mruk DD; Cheng CY
    Semin Cell Dev Biol; 2016 Nov; 59():35-45. PubMed ID: 26791048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spermatogenesis and spermatozoa ultrastructure of two Dipolydora species (Annelida: Spionidae) from the Sea of Japan.
    Radashevsky VI; Yurchenko OV; Tyurin SA; Alexandrova YN
    Micron; 2015 Feb; 69():43-55. PubMed ID: 25474749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Actin filaments, localized to the region of the developing acrosome during early stages, are lost during later stages of guinea pig spermiogenesis.
    Halenda RM; Primakoff P; Myles DG
    Biol Reprod; 1987 Mar; 36(2):491-9. PubMed ID: 2437971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytological features of spermatogenesis in Opsariichthys bidens (Teleostei, Cyprinidae).
    Tang D; Gao X; Lin C; Feng B; Hou C; Zhu J; Wang J
    Anim Reprod Sci; 2020 Nov; 222():106608. PubMed ID: 33039822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Process of cytoplasm elimination during spermiogenesis in Octopus tankahkeei: Polarized development of the spermatid and discarding of the residual body.
    Gao X; Du C; Zheng X; Zhu J; Jin S
    J Morphol; 2021 Apr; 282(4):500-510. PubMed ID: 33459394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spermatogenesis revisited. III. The course of spermatogenesis in a male-sterile pink-eyed mutant type in the mouse.
    Bryan JH
    Cell Tissue Res; 1977 May; 180(2):173-86. PubMed ID: 872192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of spermatid polarity by the actin- and microtubule (MT)-based cytoskeletons.
    Li L; Mao B; Wu S; Lian Q; Ge RS; Silvestrini B; Cheng CY
    Semin Cell Dev Biol; 2018 Sep; 81():88-96. PubMed ID: 29410206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and distribution of actin in spermatogenic cells and spermatozoa of the rabbit.
    Welch JE; O'Rand MG
    Dev Biol; 1985 Jun; 109(2):411-7. PubMed ID: 3996756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sperm Release at Spermiation Is Regulated by Changes in the Organization of Actin- and Microtubule-Based Cytoskeletons at the Apical Ectoplasmic Specialization-A Study Using the Adjudin Model.
    Li L; Tang EI; Chen H; Lian Q; Ge R; Silvestrini B; Cheng CY
    Endocrinology; 2017 Dec; 158(12):4300-4316. PubMed ID: 29040437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cytoskeleton in spermatogenesis.
    Dunleavy JEM; O'Bryan MK; Stanton PG; O'Donnell L
    Reproduction; 2019 Feb; 157(2):R53-R72. PubMed ID: 30576284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.