These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 22277250)
21. Exposure and post-exposure effects of endosulfan on Bufo bufo tadpoles: morpho-histological and ultrastructural study on epidermis and iNOS localization. Bernabò I; Guardia A; La Russa D; Madeo G; Tripepi S; Brunelli E Aquat Toxicol; 2013 Oct; 142-143():164-75. PubMed ID: 24036433 [TBL] [Abstract][Full Text] [Related]
22. Environmentally relevant concentrations of a common insecticide increase predation risk in a freshwater gastropod. Salice CJ; Kimberly DA Ecotoxicology; 2013 Jan; 22(1):42-9. PubMed ID: 23053786 [TBL] [Abstract][Full Text] [Related]
23. Combined effect of invertebrate predation and sublethal pesticide exposure on the behavior and survival of Asellus aquaticus (Crustacea; Isopoda). Bundschuh M; Appeltauer A; Dabrunz A; Schulz R Arch Environ Contam Toxicol; 2012 Jul; 63(1):77-85. PubMed ID: 22223070 [TBL] [Abstract][Full Text] [Related]
24. Sublethal pesticide concentrations and predation jointly shape life history: behavioral and physiological mechanisms. Campero M; Slos S; Ollevier F; Stoks R Ecol Appl; 2007 Oct; 17(7):2111-22. PubMed ID: 17974345 [TBL] [Abstract][Full Text] [Related]
25. A widespread morphological antipredator mechanism reduces the sensitivity to pesticides and increases the susceptibility to warming. Janssens L; Verberk W; Stoks R Sci Total Environ; 2018 Jun; 626():1230-1235. PubMed ID: 29898530 [TBL] [Abstract][Full Text] [Related]
27. The acute and chronic effects of endosulfan pulse-exposure on Jordanella floridae (Florida flagfish) over one complete life-cycle. Beyger L; Orrego R; Guchardi J; Holdway D Ecotoxicol Environ Saf; 2012 Feb; 76(2):71-8. PubMed ID: 22018545 [TBL] [Abstract][Full Text] [Related]
28. Macroinvertebrate community response to repeated short-term pulses of the insecticide imidacloprid. Mohr S; Berghahn R; Schmiediche R; Hübner V; Loth S; Feibicke M; Mailahn W; Wogram J Aquat Toxicol; 2012 Apr; 110-111():25-36. PubMed ID: 22252165 [TBL] [Abstract][Full Text] [Related]
29. Sublethal effects of endosulfan and diazinon pesticides on glutathione-S-transferase (GST) in various tissues of adult amphibians (Bufo regularis). Ezemonye L; Tongo I Chemosphere; 2010 Sep; 81(2):214-7. PubMed ID: 20609459 [TBL] [Abstract][Full Text] [Related]
30. Effects of the pyrethroid fenvalerate on the alarm response and on the vulnerability of the mosquito larva Culex pipiens molestus to the predator Notonecta glauca. Reynaldi S; Meiser M; Liess M Aquat Toxicol; 2011 Jul; 104(1-2):56-60. PubMed ID: 21543050 [TBL] [Abstract][Full Text] [Related]
31. Waterborne amitrole affects the predator-prey relationship between common frog tadpoles (Rana temporaria) and larval spotted salamander (Salamandra salamandra). Mandrillon AL; Saglio P Arch Environ Contam Toxicol; 2007 Aug; 53(2):233-40. PubMed ID: 17549540 [TBL] [Abstract][Full Text] [Related]
32. An escape theory model for directionally moving prey and an experimental test in juvenile Chinook salmon. Sabal MC; Merz JE; Alonzo SH; Palkovacs EP J Anim Ecol; 2020 Aug; 89(8):1824-1836. PubMed ID: 32267534 [TBL] [Abstract][Full Text] [Related]
33. Prey behavior, age-dependent vulnerability, and predation rates. Lingle S; Feldman A; Boyce MS; Wilson WF Am Nat; 2008 Nov; 172(5):712-25. PubMed ID: 18840071 [TBL] [Abstract][Full Text] [Related]
34. Behaviour of damselfly larvae (Enallagma cyathigerum) (Insecta, Odonata) after long-term exposure to PFOS. Van Gossum H; Bots J; Snijkers T; Meyer J; Van Wassenbergh S; De Coen W; De Bruyn L Environ Pollut; 2009 Apr; 157(4):1332-6. PubMed ID: 19110351 [TBL] [Abstract][Full Text] [Related]
35. Neurotoxicity of organophosphate pesticides could reduce the ability of fish to escape predation under low doses of exposure. Sandoval-Herrera N; Mena F; Espinoza M; Romero A Sci Rep; 2019 Jul; 9(1):10530. PubMed ID: 31324839 [TBL] [Abstract][Full Text] [Related]
36. Modeling larval fish behavior: scaling the sublethal effects of methylmercury to population-relevant endpoints. Murphy CA; Rose KA; Alvarez Mdel C; Fuiman LA Aquat Toxicol; 2008 Mar; 86(4):470-84. PubMed ID: 18272240 [TBL] [Abstract][Full Text] [Related]
37. Chronic predation risk reduces escape speed by increasing oxidative damage: a deadly cost of an adaptive antipredator response. Janssens L; Stoks R PLoS One; 2014; 9(6):e101273. PubMed ID: 24968142 [TBL] [Abstract][Full Text] [Related]
38. Chlorpyrifos-induced oxidative damage is reduced under warming and predation risk: Explaining antagonistic interactions with a pesticide. Janssens L; Stoks R Environ Pollut; 2017 Jul; 226():79-88. PubMed ID: 28411497 [TBL] [Abstract][Full Text] [Related]
39. Survival selection on escape performance and its underlying phenotypic traits: a case of many-to-one mapping. Strobbe F; McPeek MA; De Block M; De Meester L; Stoks R J Evol Biol; 2009 Jun; 22(6):1172-82. PubMed ID: 19389154 [TBL] [Abstract][Full Text] [Related]