BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 22277656)

  • 1. Sphingoid bases and the serine catabolic enzyme CHA1 define a novel feedforward/feedback mechanism in the response to serine availability.
    Montefusco DJ; Newcomb B; Gandy JL; Brice SE; Matmati N; Cowart LA; Hannun YA
    J Biol Chem; 2012 Mar; 287(12):9280-9. PubMed ID: 22277656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role for de novo sphingoid base biosynthesis in the heat-induced transient cell cycle arrest of Saccharomyces cerevisiae.
    Jenkins GM; Hannun YA
    J Biol Chem; 2001 Mar; 276(11):8574-81. PubMed ID: 11056159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective substrate supply in the regulation of yeast de novo sphingolipid synthesis.
    Cowart LA; Hannun YA
    J Biol Chem; 2007 Apr; 282(16):12330-40. PubMed ID: 17322298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular genetics of serine and threonine catabolism in Saccharomyces cerevisiae.
    Petersen JG; Kielland-Brandt MC; Nilsson-Tillgren T; Bornaes C; Holmberg S
    Genetics; 1988 Jul; 119(3):527-34. PubMed ID: 2841185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sphingolipids mediate formation of mRNA processing bodies during the heat-stress response of Saccharomyces cerevisiae.
    Cowart LA; Gandy JL; Tholanikunnel B; Hannun YA
    Biochem J; 2010 Oct; 431(1):31-8. PubMed ID: 20629639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Serine and threonine catabolism in Saccharomyces cerevisiae: the CHA1 polypeptide is homologous with other serine and threonine dehydratases.
    Bornaes C; Petersen JG; Holmberg S
    Genetics; 1992 Jul; 131(3):531-9. PubMed ID: 1628804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of sphingolipid metabolism by the phosphatidylinositol-4-phosphate phosphatase Sac1p through regulation of phosphatidylinositol in Saccharomyces cerevisiae.
    Brice SE; Alford CW; Cowart LA
    J Biol Chem; 2009 Mar; 284(12):7588-96. PubMed ID: 19139096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A regulatory element in the CHA1 promoter which confers inducibility by serine and threonine on Saccharomyces cerevisiae genes.
    Bornaes C; Ignjatovic MW; Schjerling P; Kielland-Brandt MC; Holmberg S
    Mol Cell Biol; 1993 Dec; 13(12):7604-11. PubMed ID: 8246977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sphingoid base 1-phosphate phosphatase: a key regulator of sphingolipid metabolism and stress response.
    Mandala SM; Thornton R; Tu Z; Kurtz MB; Nickels J; Broach J; Menzeleev R; Spiegel S
    Proc Natl Acad Sci U S A; 1998 Jan; 95(1):150-5. PubMed ID: 9419344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dispersed mutations in histone H3 that affect transcriptional repression and chromatin structure of the CHA1 promoter in Saccharomyces cerevisiae.
    He Q; Yu C; Morse RH
    Eukaryot Cell; 2008 Oct; 7(10):1649-60. PubMed ID: 18658255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleosome structure of the yeast CHA1 promoter: analysis of activation-dependent chromatin remodeling of an RNA-polymerase-II-transcribed gene in TBP and RNA pol II mutants defective in vivo in response to acidic activators.
    Moreira JM; Holmberg S
    EMBO J; 1998 Oct; 17(20):6028-38. PubMed ID: 9774346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sphingoid base is required for translation initiation during heat stress in Saccharomyces cerevisiae.
    Meier KD; Deloche O; Kajiwara K; Funato K; Riezman H
    Mol Biol Cell; 2006 Mar; 17(3):1164-75. PubMed ID: 16381812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism and selected functions of sphingolipids in the yeast Saccharomyces cerevisiae.
    Dickson RC; Lester RL
    Biochim Biophys Acta; 1999 Jun; 1438(3):305-21. PubMed ID: 10366774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of yeast sphingolipids in the heat stress response of Saccharomyces cerevisiae.
    Jenkins GM; Richards A; Wahl T; Mao C; Obeid L; Hannun Y
    J Biol Chem; 1997 Dec; 272(51):32566-72. PubMed ID: 9405471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thematic review series: sphingolipids. New insights into sphingolipid metabolism and function in budding yeast.
    Dickson RC
    J Lipid Res; 2008 May; 49(5):909-21. PubMed ID: 18296751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytoceramide and sphingoid bases derived from brewer's yeast Saccharomyces pastorianus activate peroxisome proliferator-activated receptors.
    Murakami I; Wakasa Y; Yamashita S; Kurihara T; Zama K; Kobayashi N; Mizutani Y; Mitsutake S; Shigyo T; Igarashi Y
    Lipids Health Dis; 2011 Aug; 10():150. PubMed ID: 21861924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cha4p of Saccharomyces cerevisiae activates transcription via serine/threonine response elements.
    Holmberg S; Schjerling P
    Genetics; 1996 Oct; 144(2):467-78. PubMed ID: 8889513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orm protein phosphoregulation mediates transient sphingolipid biosynthesis response to heat stress via the Pkh-Ypk and Cdc55-PP2A pathways.
    Sun Y; Miao Y; Yamane Y; Zhang C; Shokat KM; Takematsu H; Kozutsumi Y; Drubin DG
    Mol Biol Cell; 2012 Jun; 23(12):2388-98. PubMed ID: 22535525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-level production of tetraacetyl phytosphingosine (TAPS) by combined genetic engineering of sphingoid base biosynthesis and L-serine availability in the non-conventional yeast Pichia ciferrii.
    Schorsch C; Köhler T; Andrea H; Boles E
    Metab Eng; 2012 Mar; 14(2):172-84. PubMed ID: 22178746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myristate-derived d16:0 sphingolipids constitute a cardiac sphingolipid pool with distinct synthetic routes and functional properties.
    Russo SB; Tidhar R; Futerman AH; Cowart LA
    J Biol Chem; 2013 May; 288(19):13397-409. PubMed ID: 23530041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.