BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 22277745)

  • 21. Dry film refractive index as an important parameter for ultra-low fouling surface coatings.
    Brault ND; Sundaram HS; Li Y; Huang CJ; Yu Q; Jiang S
    Biomacromolecules; 2012 Mar; 13(3):589-93. PubMed ID: 22352876
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Achieving highly effective non-biofouling performance for polypropylene membranes modified by UV-induced surface graft polymerization of two oppositely charged monomers.
    Zhao YH; Zhu XY; Wee KH; Bai R
    J Phys Chem B; 2010 Feb; 114(7):2422-9. PubMed ID: 20121056
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of polymer brush architecture on antibiofouling properties.
    Gunkel G; Weinhart M; Becherer T; Haag R; Huck WT
    Biomacromolecules; 2011 Nov; 12(11):4169-72. PubMed ID: 21932841
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel carbohydrate-derived side-chain polyether with excellent protein resistance.
    Metzke M; Bai JZ; Guan Z
    J Am Chem Soc; 2003 Jul; 125(26):7760-1. PubMed ID: 12822968
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein microarrays based on polymer brushes prepared via surface-initiated atom transfer radical polymerization.
    Barbey R; Kauffmann E; Ehrat M; Klok HA
    Biomacromolecules; 2010 Dec; 11(12):3467-79. PubMed ID: 21090572
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High capacity, charge-selective protein uptake by polyelectrolyte brushes.
    Kusumo A; Bombalski L; Lin Q; Matyjaszewski K; Schneider JW; Tilton RD
    Langmuir; 2007 Apr; 23(8):4448-54. PubMed ID: 17358090
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hemocompatibility of pseudozwitterionic polymer brushes with a systematic well-defined charge-bias control.
    Jhong JF; Sin MC; Kung HH; Chinnathambi A; Alharbi SA; Chang Y
    J Biomater Sci Polym Ed; 2014; 25(14-15):1558-72. PubMed ID: 24894872
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nonfouling behavior of polycarboxybetaine-grafted surfaces: structural and environmental effects.
    Zhang Z; Vaisocherová H; Cheng G; Yang W; Xue H; Jiang S
    Biomacromolecules; 2008 Oct; 9(10):2686-92. PubMed ID: 18785772
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antibacterial surfaces based on polymer brushes: investigation on the influence of brush properties on antimicrobial peptide immobilization and antimicrobial activity.
    Gao G; Yu K; Kindrachuk J; Brooks DE; Hancock RE; Kizhakkedathu JN
    Biomacromolecules; 2011 Oct; 12(10):3715-27. PubMed ID: 21902171
    [TBL] [Abstract][Full Text] [Related]  

  • 30. "Hearing Loss" in QCM Measurement of Protein Adsorption to Protein Resistant Polymer Brush Layers.
    Luan Y; Li D; Wei T; Wang M; Tang Z; Brash JL; Chen H
    Anal Chem; 2017 Apr; 89(7):4184-4191. PubMed ID: 28276243
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lateral control of protein adsorption on charged polymer gradients.
    Ekblad T; Andersson O; Tai FI; Ederth T; Liedberg B
    Langmuir; 2009 Apr; 25(6):3755-62. PubMed ID: 19708252
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stability and nonfouling properties of poly(poly(ethylene glycol) methacrylate) brushes under cell culture conditions.
    Tugulu S; Klok HA
    Biomacromolecules; 2008 Mar; 9(3):906-12. PubMed ID: 18260637
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings.
    Zhang Z; Chen S; Chang Y; Jiang S
    J Phys Chem B; 2006 Jun; 110(22):10799-804. PubMed ID: 16771329
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The hydrolysis of cationic polycarboxybetaine esters to zwitterionic polycarboxybetaines with controlled properties.
    Zhang Z; Cheng G; Carr LR; Vaisocherová H; Chen S; Jiang S
    Biomaterials; 2008 Dec; 29(36):4719-25. PubMed ID: 18819709
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional polymer brushes via surface-initiated atom transfer radical graft polymerization for combating marine biofouling.
    Yang WJ; Neoh KG; Kang ET; Lee SS; Teo SL; Rittschof D
    Biofouling; 2012; 28(9):895-912. PubMed ID: 22963034
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antifouling poly(β-peptoid)s.
    Lin S; Zhang B; Skoumal MJ; Ramunno B; Li X; Wesdemiotis C; Liu L; Jia L
    Biomacromolecules; 2011 Jul; 12(7):2573-82. PubMed ID: 21585194
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines.
    Chang Y; Chen S; Zhang Z; Jiang S
    Langmuir; 2006 Feb; 22(5):2222-6. PubMed ID: 16489810
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reduction of protein adsorption on well-characterized polymer brush layers with varying chemical structures.
    Inoue Y; Ishihara K
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):350-7. PubMed ID: 20705439
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Poly(carboxybetaine methacrylamide)-modified nanoparticles: a model system for studying the effect of chain chemistry on film properties, adsorbed protein conformation, and clot formation kinetics.
    Abraham S; So A; Unsworth LD
    Biomacromolecules; 2011 Oct; 12(10):3567-80. PubMed ID: 21892823
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Studies of electroosmotic flow and the effects of protein adsorption in plasma-polymerized microchannel surfaces.
    Salim M; Wright PC; McArthur SL
    Electrophoresis; 2009 Jun; 30(11):1877-87. PubMed ID: 19517430
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.