These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 22277774)
1. Incorporation of phosphate group modulates bone cell attachment and differentiation on oligo(polyethylene glycol) fumarate hydrogel. Dadsetan M; Giuliani M; Wanivenhaus F; Brett Runge M; Charlesworth JE; Yaszemski MJ Acta Biomater; 2012 Apr; 8(4):1430-9. PubMed ID: 22277774 [TBL] [Abstract][Full Text] [Related]
2. Phosphate functionalization and enzymatic calcium mineralization synergistically enhance oligo[poly(ethylene glycol) fumarate] hydrogel osteoconductivity for bone tissue engineering. George MN; Liu X; Miller AL; Xu H; Lu L J Biomed Mater Res A; 2020 Mar; 108(3):515-527. PubMed ID: 31702863 [TBL] [Abstract][Full Text] [Related]
3. Potential of hydrogels based on poly(ethylene glycol) and sebacic acid as orthopedic tissue engineering scaffolds. Kim J; Hefferan TE; Yaszemski MJ; Lu L Tissue Eng Part A; 2009 Aug; 15(8):2299-307. PubMed ID: 19292677 [TBL] [Abstract][Full Text] [Related]
4. Exposed hydroxyapatite particles on the surface of photo-crosslinked nanocomposites for promoting MC3T3 cell proliferation and differentiation. Cai L; Guinn AS; Wang S Acta Biomater; 2011 May; 7(5):2185-99. PubMed ID: 21284960 [TBL] [Abstract][Full Text] [Related]
5. Characterization of glycidyl methacrylate - crosslinked hyaluronan hydrogel scaffolds incorporating elastogenic hyaluronan oligomers. Ibrahim S; Kothapalli CR; Kang QK; Ramamurthi A Acta Biomater; 2011 Feb; 7(2):653-65. PubMed ID: 20709199 [TBL] [Abstract][Full Text] [Related]
6. Compressive elasticity of three-dimensional nanofiber matrix directs mesenchymal stem cell differentiation to vascular cells with endothelial or smooth muscle cell markers. Wingate K; Bonani W; Tan Y; Bryant SJ; Tan W Acta Biomater; 2012 Apr; 8(4):1440-9. PubMed ID: 22266031 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of positively charged poly(ethylene glycol)-diacrylate hydrogel as a bone tissue engineering scaffold. Tan F; Xu X; Deng T; Yin M; Zhang X; Wang J Biomed Mater; 2012 Oct; 7(5):055009. PubMed ID: 22945346 [TBL] [Abstract][Full Text] [Related]
8. In vivo bone and soft tissue response to injectable, biodegradable oligo(poly(ethylene glycol) fumarate) hydrogels. Shin H; Quinten Ruhé P; Mikos AG; Jansen JA Biomaterials; 2003 Aug; 24(19):3201-11. PubMed ID: 12763447 [TBL] [Abstract][Full Text] [Related]
9. Stimulation of neurite outgrowth using positively charged hydrogels. Dadsetan M; Knight AM; Lu L; Windebank AJ; Yaszemski MJ Biomaterials; 2009 Aug; 30(23-24):3874-81. PubMed ID: 19427689 [TBL] [Abstract][Full Text] [Related]
10. Evaluating Poly(Acrylamide-co-Acrylic Acid) Hydrogels Stress Relaxation to Direct the Osteogenic Differentiation of Mesenchymal Stem Cells. Prouvé E; Drouin B; Chevallier P; Rémy M; Durrieu MC; Laroche G Macromol Biosci; 2021 Jun; 21(6):e2100069. PubMed ID: 33870650 [TBL] [Abstract][Full Text] [Related]
11. Novel bioceramic-reinforced hydrogel for alveolar bone regeneration. Iviglia G; Cassinelli C; Torre E; Baino F; Morra M; Vitale-Brovarone C Acta Biomater; 2016 Oct; 44():97-109. PubMed ID: 27521494 [TBL] [Abstract][Full Text] [Related]
12. The effect of ethylene glycol methacrylate phosphate in PEG hydrogels on mineralization and viability of encapsulated hMSCs. Nuttelman CR; Benoit DS; Tripodi MC; Anseth KS Biomaterials; 2006 Mar; 27(8):1377-86. PubMed ID: 16139351 [TBL] [Abstract][Full Text] [Related]
13. Phosphate Functional Groups Improve Oligo[(Polyethylene Glycol) Fumarate] Osteoconduction and BMP-2 Osteoinductive Efficacy. Olthof MGL; Tryfonidou MA; Liu X; Pouran B; Meij BP; Dhert WJA; Yaszemski MJ; Lu L; Alblas J; Kempen DHR Tissue Eng Part A; 2018 May; 24(9-10):819-829. PubMed ID: 29065776 [TBL] [Abstract][Full Text] [Related]
14. Black phosphorus incorporation modulates nanocomposite hydrogel properties and subsequent MC3T3 cell attachment, proliferation, and differentiation. Xu H; Liu X; George MN; Miller AL; Park S; Xu H; Terzic A; Lu L J Biomed Mater Res A; 2021 Sep; 109(9):1633-1645. PubMed ID: 33650768 [TBL] [Abstract][Full Text] [Related]
15. Polycaprolactone/oligomer compound scaffolds for cardiac tissue engineering. Reddy CS; Venugopal JR; Ramakrishna S; Zussman E J Biomed Mater Res A; 2014 Oct; 102(10):3713-25. PubMed ID: 24288184 [TBL] [Abstract][Full Text] [Related]
16. Poly (ethylene glycol) hydrogel scaffolds with multiscale porosity for culture of human adipose-derived stem cells. Barnett HH; Heimbuck AM; Pursell I; Hegab RA; Sawyer BJ; Newman JJ; Caldorera-Moore ME J Biomater Sci Polym Ed; 2019 Aug; 30(11):895-918. PubMed ID: 31039085 [TBL] [Abstract][Full Text] [Related]
17. In vitro and in vivo enzyme-mediated biomineralization of oligo(poly(ethylene glycol) fumarate hydrogels. Bongio M; Nejadnik MR; Birgani ZT; Habibovic P; Kinard LA; Kasper FK; Mikos AG; Jansen JA; Leeuwenburgh SC; van den Beucken JJ Macromol Biosci; 2013 Jun; 13(6):777-88. PubMed ID: 23576286 [TBL] [Abstract][Full Text] [Related]
18. Hydroxyapatite nanoparticle injectable hydrogel scaffold to support osteogenic differentiation of human mesenchymal stem cells. Thorpe AA; Creasey S; Sammon C; Le Maitre CL Eur Cell Mater; 2016 Jul; 32():1-23. PubMed ID: 27377664 [TBL] [Abstract][Full Text] [Related]
19. PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity. Ma Y; Zhang W; Wang Z; Wang Z; Xie Q; Niu H; Guo H; Yuan Y; Liu C Acta Biomater; 2016 Oct; 44():110-24. PubMed ID: 27544808 [TBL] [Abstract][Full Text] [Related]
20. Modulation of marrow stromal osteoblast adhesion on biomimetic oligo[poly(ethylene glycol) fumarate] hydrogels modified with Arg-Gly-Asp peptides and a poly(ethyleneglycol) spacer. Shin H; Jo S; Mikos AG J Biomed Mater Res; 2002 Aug; 61(2):169-79. PubMed ID: 12061329 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]