These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 22278088)

  • 21. Continuous microfluidic DNA and protein trapping and concentration by balancing transverse electrokinetic forces.
    Morales MC; Lin H; Zahn JD
    Lab Chip; 2012 Jan; 12(1):99-108. PubMed ID: 22045330
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanofluidic technology for biomolecule applications: a critical review.
    Napoli M; Eijkel JC; Pennathur S
    Lab Chip; 2010 Apr; 10(8):957-85. PubMed ID: 20358103
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A low-cost, label-free DNA detection method in lab-on-chip format based on electrohydrodynamic instabilities, with application to long-range PCR.
    Diakité ML; Champ J; Descroix S; Malaquin L; Amblard F; Viovy JL
    Lab Chip; 2012 Nov; 12(22):4738-47. PubMed ID: 22968438
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A device for extraction, manipulation and stretching of DNA from single human chromosomes.
    Rasmussen KH; Marie R; Lange JM; Svendsen WE; Kristensen A; Mir KU
    Lab Chip; 2011 Apr; 11(8):1431-3. PubMed ID: 21350789
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Statics and dynamics of single DNA molecules confined in nanochannels.
    Reisner W; Morton KJ; Riehn R; Wang YM; Yu Z; Rosen M; Sturm JC; Chou SY; Frey E; Austin RH
    Phys Rev Lett; 2005 May; 94(19):196101. PubMed ID: 16090189
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On-chip coupling of free-solution transient ITP and CGE for highly efficient separation of dsDNA with variable sample loading amounts.
    Liu D; Chen B; Wang L; Zhou X
    Electrophoresis; 2009 Dec; 30(24):4300-5. PubMed ID: 19924696
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A nanofluidic device for real-time visualization of DNA-protein interactions on the single DNA molecule level.
    Öz R; Kk S; Westerlund F
    Nanoscale; 2019 Jan; 11(4):2071-2078. PubMed ID: 30644945
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Visualization of a specific sequence on a single large DNA molecule using fluorescence microscopy based on a new DNA-stretching method.
    Oana H; Ueda M; Washizu M
    Biochem Biophys Res Commun; 1999 Nov; 265(1):140-3. PubMed ID: 10548504
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Persistence length of DNA molecules confined in nanochannels.
    Cifra P; Benková Z; Bleha T
    Phys Chem Chem Phys; 2010 Aug; 12(31):8934-42. PubMed ID: 20589298
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A microfabricated CE chip for DNA pre-concentration and separation utilizing a normally closed valve.
    Kuo CH; Wang JH; Lee GB
    Electrophoresis; 2009 Sep; 30(18):3228-35. PubMed ID: 19722201
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced discrimination of DNA molecules in nanofluidic channels through multiple measurements.
    Sen YH; Jain T; Aguilar CA; Karnik R
    Lab Chip; 2012 Mar; 12(6):1094-101. PubMed ID: 22298224
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Directly Accessible and Transferrable Nanofluidic Systems for Biomolecule Manipulation.
    Kim YS; Dincau BM; Kwon YT; Kim JH; Yeo WH
    ACS Sens; 2019 May; 4(5):1417-1423. PubMed ID: 31062586
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stretching and compression of DNA by external forces under nanochannel confinement.
    Bleha T; Cifra P
    Soft Matter; 2018 Feb; 14(7):1247-1259. PubMed ID: 29363709
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simple replication methods for producing nanoslits in thermoplastics and the transport dynamics of double-stranded DNA through these slits.
    Chantiwas R; Hupert ML; Pullagurla SR; Balamurugan S; Tamarit-López J; Park S; Datta P; Goettert J; Cho YK; Soper SA
    Lab Chip; 2010 Dec; 10(23):3255-64. PubMed ID: 20938506
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Separation of long DNA molecules in a microfabricated entropic trap array.
    Han J; Craighead HG
    Science; 2000 May; 288(5468):1026-9. PubMed ID: 10807568
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Giant Acceleration of DNA Diffusion in an Array of Entropic Barriers.
    Kim D; Bowman C; Del Bonis-O'Donnell JT; Matzavinos A; Stein D
    Phys Rev Lett; 2017 Jan; 118(4):048002. PubMed ID: 28186790
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ionic effect on combing of single DNA molecules and observation of their force-induced melting by fluorescence microscopy.
    Liu YY; Wang PY; Dou SX; Wang WC; Xie P; Yin HW; Zhang XD; Xi XG
    J Chem Phys; 2004 Sep; 121(9):4302-9. PubMed ID: 15332979
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Decreasing effective nanofluidic filter size by modulating electrical double layers: separation enhancement in microfabricated nanofluidic filters.
    Bow H; Fu J; Han J
    Electrophoresis; 2008 Dec; 29(23):4646-51. PubMed ID: 19016242
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Theoretical and experimental correlations of gas dissolution, diffusion, and thermodynamic properties in determination of gas permeability and selectivity in supported ionic liquid membranes.
    Gan Q; Zou Y; Rooney D; Nancarrow P; Thompson J; Liang L; Lewis M
    Adv Colloid Interface Sci; 2011 May; 164(1-2):45-55. PubMed ID: 21333963
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Precision platform for convex lens-induced confinement microscopy.
    Berard D; McFaul CM; Leith JS; Arsenault AK; Michaud F; Leslie SR
    Rev Sci Instrum; 2013 Oct; 84(10):103704. PubMed ID: 24182116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.