These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 22278091)
1. Electrochemical hydrogen production in aqueous micellar solution by a diiron benzenedithiolate complex relevant to [FeFe] hydrogenases. Quentel F; Passard G; Gloaguen F Phys Chem Chem Phys; 2012 Jan; ():. PubMed ID: 22278091 [TBL] [Abstract][Full Text] [Related]
2. A binuclear iron-thiolate catalyst for electrochemical hydrogen production in aqueous micellar solution. Quentel F; Passard G; Gloaguen F Chemistry; 2012 Oct; 18(42):13473-9. PubMed ID: 22968711 [TBL] [Abstract][Full Text] [Related]
3. Photocatalytic hydrogen production using models of the iron-iron hydrogenase active site dispersed in micellar solution. Orain C; Quentel F; Gloaguen F ChemSusChem; 2014 Feb; 7(2):638-43. PubMed ID: 24127363 [TBL] [Abstract][Full Text] [Related]
4. Photocatalytic hydrogen evolution from rhenium(I) complexes to [FeFe] hydrogenase mimics in aqueous SDS micellar systems: a biomimetic pathway. Wang HY; Wang WG; Si G; Wang F; Tung CH; Wu LZ Langmuir; 2010 Jun; 26(12):9766-71. PubMed ID: 20469832 [TBL] [Abstract][Full Text] [Related]
5. The Molecular Proceedings of Biological Hydrogen Turnover. Haumann M; Stripp ST Acc Chem Res; 2018 Aug; 51(8):1755-1763. PubMed ID: 30001117 [TBL] [Abstract][Full Text] [Related]
6. Di/mono-nuclear iron(I)/(II) complexes as functional models for the 2Fe2S subunit and distal Fe moiety of the active site of [FeFe] hydrogenases: protonations, molecular structures and electrochemical properties. Gao S; Fan J; Sun S; Song F; Peng X; Duan Q; Jiang D; Liang Q Dalton Trans; 2012 Oct; 41(39):12064-74. PubMed ID: 22911248 [TBL] [Abstract][Full Text] [Related]
7. A Functional Hydrogenase Mimic Chemisorbed onto Fluorine-Doped Tin Oxide Electrodes: A Strategy towards Water Splitting Devices. Zaffaroni R; Detz RJ; van der Vlugt JI; Reek JNH ChemSusChem; 2018 Jan; 11(1):209-218. PubMed ID: 29077275 [TBL] [Abstract][Full Text] [Related]
8. Differential Protonation at the Catalytic Six-Iron Cofactor of [FeFe]-Hydrogenases Revealed by Mebs S; Duan J; Wittkamp F; Stripp ST; Happe T; Apfel UP; Winkler M; Haumann M Inorg Chem; 2019 Mar; 58(6):4000-4013. PubMed ID: 30802044 [TBL] [Abstract][Full Text] [Related]
9. Protonation/reduction dynamics at the [4Fe-4S] cluster of the hydrogen-forming cofactor in [FeFe]-hydrogenases. Senger M; Mebs S; Duan J; Shulenina O; Laun K; Kertess L; Wittkamp F; Apfel UP; Happe T; Winkler M; Haumann M; Stripp ST Phys Chem Chem Phys; 2018 Jan; 20(5):3128-3140. PubMed ID: 28884175 [TBL] [Abstract][Full Text] [Related]
10. The roles of long-range proton-coupled electron transfer in the directionality and efficiency of [FeFe]-hydrogenases. Lampret O; Duan J; Hofmann E; Winkler M; Armstrong FA; Happe T Proc Natl Acad Sci U S A; 2020 Aug; 117(34):20520-20529. PubMed ID: 32796105 [TBL] [Abstract][Full Text] [Related]
11. Structural and Kinetic Studies of Intermediates of a Biomimetic Diiron Proton-Reduction Catalyst. Wang S; Aster A; Mirmohades M; Lomoth R; Hammarström L Inorg Chem; 2018 Jan; 57(2):768-776. PubMed ID: 29297686 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and structural characterization of the mono- and diphosphine-containing diiron propanedithiolate complexes related to [FeFe]-hydrogenases. Biomimetic H2 evolution catalyzed by (mu-PDT)Fe2(CO)4[(Ph2P)2N(n-Pr)]. Song LC; Li CG; Ge JH; Yang ZY; Wang HT; Zhang J; Hu QM J Inorg Biochem; 2008 Nov; 102(11):1973-9. PubMed ID: 18783833 [TBL] [Abstract][Full Text] [Related]
13. Three diiron complexes bearing an aromatic ring as mimics of the diiron subunit of [FeFe]-hydrogenase: synthesis, electron transfer and coupled chemical reactions. Zhao J; Wei Z; Zeng X; Liu X Dalton Trans; 2012 Aug; 41(36):11125-33. PubMed ID: 22864673 [TBL] [Abstract][Full Text] [Related]
14. Proton Transfer Mechanisms in Bimetallic Hydrogenases. Tai H; Hirota S; Stripp ST Acc Chem Res; 2021 Jan; 54(1):232-241. PubMed ID: 33326230 [TBL] [Abstract][Full Text] [Related]
15. Enzymatic mechanism of Fe-only hydrogenase: density functional study on H-H making/breaking at the diiron cluster with concerted proton and electron transfers. Zhou T; Mo Y; Liu A; Zhou Z; Tsai KR Inorg Chem; 2004 Feb; 43(3):923-30. PubMed ID: 14753812 [TBL] [Abstract][Full Text] [Related]
16. Immobilized Cobalt Bis(benzenedithiolate) Complexes: Exceptionally Active Heterogeneous Electrocatalysts for Dihydrogen Production from Mildly Acidic Aqueous Solutions. Eady SC; MacInnes MM; Lehnert N Inorg Chem; 2017 Oct; 56(19):11654-11667. PubMed ID: 28933830 [TBL] [Abstract][Full Text] [Related]
17. Mechanism of electrocatalytic hydrogen production by a di-iron model of iron-iron hydrogenase: a density functional theory study of proton dissociation constants and electrode reduction potentials. Surawatanawong P; Tye JW; Darensbourg MY; Hall MB Dalton Trans; 2010 Mar; 39(12):3093-104. PubMed ID: 20221544 [TBL] [Abstract][Full Text] [Related]
18. A molecular copper catalyst for electrochemical water reduction with a large hydrogen-generation rate constant in aqueous solution. Zhang P; Wang M; Yang Y; Yao T; Sun L Angew Chem Int Ed Engl; 2014 Dec; 53(50):13803-7. PubMed ID: 25314646 [TBL] [Abstract][Full Text] [Related]
19. Ultrafast photodriven intramolecular electron transfer from a zinc porphyrin to a readily reduced diiron hydrogenase model complex. Samuel AP; Co DT; Stern CL; Wasielewski MR J Am Chem Soc; 2010 Jul; 132(26):8813-5. PubMed ID: 20536125 [TBL] [Abstract][Full Text] [Related]
20. Reactions of [FeFe]-hydrogenase models involving the formation of hydrides related to proton reduction and hydrogen oxidation. Wang N; Wang M; Chen L; Sun L Dalton Trans; 2013 Sep; 42(34):12059-71. PubMed ID: 23846321 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]