These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 22278976)
41. Free energy perturbation study of water dimer dissociation kinetics. Ming Y; Lai G; Tong C; Wood RH; Doren DJ J Chem Phys; 2004 Jul; 121(2):773-7. PubMed ID: 15260604 [TBL] [Abstract][Full Text] [Related]
42. The small planarization barriers for the amino group in the nucleic acid bases. Wang S; Schaefer HF J Chem Phys; 2006 Jan; 124(4):044303. PubMed ID: 16460158 [TBL] [Abstract][Full Text] [Related]
43. An ab initio benchmark study of hydrogen bonded formamide dimers. Frey JA; Leutwyler S J Phys Chem A; 2006 Nov; 110(45):12512-8. PubMed ID: 17091957 [TBL] [Abstract][Full Text] [Related]
44. Dissociation of NaCl in water from ab initio molecular dynamics simulations. Timko J; Bucher D; Kuyucak S J Chem Phys; 2010 Mar; 132(11):114510. PubMed ID: 20331308 [TBL] [Abstract][Full Text] [Related]
45. Ab initio molecular geometry and anharmonic vibrational spectra of thiourea and thiourea-d4. Kowal AT J Comput Chem; 2011 Mar; 32(4):718-29. PubMed ID: 20925086 [TBL] [Abstract][Full Text] [Related]
46. Estimated MP2 and CCSD(T) interaction energies of n-alkane dimers at the basis set limit: comparison of the methods of Helgaker et al. and Feller. Tsuzuki S; Honda K; Uchimaru T; Mikami M J Chem Phys; 2006 Mar; 124(11):114304. PubMed ID: 16555885 [TBL] [Abstract][Full Text] [Related]
47. Simulations of the solid, liquid, and melting of 1-n-butyl-4-amino-1,2,4-triazolium bromide. Alavi S; Thompson DL J Phys Chem B; 2005 Sep; 109(38):18127-34. PubMed ID: 16853328 [TBL] [Abstract][Full Text] [Related]
48. Potential energy surfaces of an adenine-thymine base pair and its methylated analogue in the presence of one and two water molecules: molecular mechanics and correlated ab initio study. Kabelác M; Zendlová L; Reha D; Hobza P J Phys Chem B; 2005 Jun; 109(24):12206-13. PubMed ID: 16852505 [TBL] [Abstract][Full Text] [Related]
49. Revisiting the hexane-water interface via molecular dynamics simulations using nonadditive alkane-water potentials. Patel SA; Brooks CL J Chem Phys; 2006 May; 124(20):204706. PubMed ID: 16774363 [TBL] [Abstract][Full Text] [Related]
50. Full-dimensional, ab initio potential energy and dipole moment surfaces for water. Wang Y; Shepler BC; Braams BJ; Bowman JM J Chem Phys; 2009 Aug; 131(5):054511. PubMed ID: 19673578 [TBL] [Abstract][Full Text] [Related]
51. An analytical potential energy function to model protonated peptide soft-landing experiments. The CH3NH3+/CH4 interactions. Deb B; Hu W; Song K; Hase WL Phys Chem Chem Phys; 2008 Aug; 10(31):4565-72. PubMed ID: 18665306 [TBL] [Abstract][Full Text] [Related]
52. Conformational stability of cyclobutanol from temperature dependent infrared spectra of xenon solutions, r0 structural parameters, ab initio calculations and vibrational assignment. Durig JR; Ganguly A; El Defrawy AM; Gounev TK; Guirgis GA Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(4):1379-89. PubMed ID: 18602334 [TBL] [Abstract][Full Text] [Related]
53. A nonadditive methanol force field: bulk liquid and liquid-vapor interfacial properties via molecular dynamics simulations using a fluctuating charge model. Patel S; Brooks CL J Chem Phys; 2005 Jan; 122(2):024508. PubMed ID: 15638599 [TBL] [Abstract][Full Text] [Related]
54. Development of many-body polarizable force fields for Li-battery components: 1. Ether, alkane, and carbonate-based solvents. Borodin O; Smith GD J Phys Chem B; 2006 Mar; 110(12):6279-92. PubMed ID: 16553446 [TBL] [Abstract][Full Text] [Related]
56. Balancing simulation accuracy and efficiency with the Amber united atom force field. Hsieh MJ; Luo R J Phys Chem B; 2010 Mar; 114(8):2886-93. PubMed ID: 20131885 [TBL] [Abstract][Full Text] [Related]
57. Thermodynamic properties for applications in chemical industry via classical force fields. Guevara-Carrion G; Hasse H; Vrabec J Top Curr Chem; 2012; 307():201-49. PubMed ID: 21678137 [TBL] [Abstract][Full Text] [Related]
58. Ab initio calculation of structure and transport properties of He…X (X = Zn, Cd, Hg) van der Waals complexes. Sládek V; Lukeš V; Ilčin M; Biskupič S J Comput Chem; 2012 Mar; 33(7):767-78. PubMed ID: 22223123 [TBL] [Abstract][Full Text] [Related]
59. Rotational spectroscopic and ab initio studies of the Xe-H2O van der Waals dimer. Wen Q; Jäger W J Phys Chem A; 2006 Jun; 110(24):7560-7. PubMed ID: 16774197 [TBL] [Abstract][Full Text] [Related]
60. Ab initio finite field (hyper)polarizability computations on stoichiometric gallium arsenide clusters GanAsn (n=2-9). Karamanis P; Bégué D; Pouchan C J Chem Phys; 2007 Sep; 127(9):094706. PubMed ID: 17824758 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]