These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 22279004)

  • 1. A basic tutorial on cyclic voltammetry for the investigation of electroactive microbial biofilms.
    Harnisch F; Freguia S
    Chem Asian J; 2012 Mar; 7(3):466-75. PubMed ID: 22279004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical characterization of anodic biofilms enriched with glucose and acetate in single-chamber microbial fuel cells.
    Yuan Y; Zhou S; Xu N; Zhuang L
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):641-6. PubMed ID: 21050727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The diversity of techniques to study electrochemically active biofilms highlights the need for standardization.
    Harnisch F; Rabaey K
    ChemSusChem; 2012 Jun; 5(6):1027-38. PubMed ID: 22615099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroelectrochemical analyses of electroactive microbial biofilms.
    Millo D
    Biochem Soc Trans; 2012 Dec; 40(6):1284-90. PubMed ID: 23176469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroactive mixed culture derived biofilms in microbial bioelectrochemical systems: the role of pH on biofilm formation, performance and composition.
    Patil SA; Harnisch F; Koch C; Hübschmann T; Fetzer I; Carmona-Martínez AA; Müller S; Schröder U
    Bioresour Technol; 2011 Oct; 102(20):9683-90. PubMed ID: 21855323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of cyclic voltammetry to detect biofilms formed by Pseudomonas fluorescens on platinum electrodes.
    Vieira MJ; Pinho IA; Gião S; Montenegro MI
    Biofouling; 2003 Aug; 19(4):215-22. PubMed ID: 14626841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial Interactions in Electroactive Biofilms for Environmental Engineering Applications: A Role for Nonexoelectrogens.
    Fessler M; Madsen JS; Zhang Y
    Environ Sci Technol; 2022 Nov; 56(22):15273-15279. PubMed ID: 36223388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron Storage in Electroactive Biofilms.
    Ter Heijne A; Pereira MA; Pereira J; Sleutels T
    Trends Biotechnol; 2021 Jan; 39(1):34-42. PubMed ID: 32646618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical communication between microbial cells and electrodes via osmium redox systems.
    Hasan K; Patil SA; Leech D; Hägerhäll C; Gorton L
    Biochem Soc Trans; 2012 Dec; 40(6):1330-5. PubMed ID: 23176477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioelectrochemical interface engineering: toward the fabrication of electrochemical biosensors, biofuel cells, and self-powered logic biosensors.
    Zhou M; Dong S
    Acc Chem Res; 2011 Nov; 44(11):1232-43. PubMed ID: 21812435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of electro-active biofilms.
    Erable B; Duţeanu NM; Ghangrekar MM; Dumas C; Scott K
    Biofouling; 2010 Jan; 26(1):57-71. PubMed ID: 20390557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxicity response of electroactive microbial biofilms--a decisive feature for potential biosensor and power source applications.
    Patil S; Harnisch F; Schröder U
    Chemphyschem; 2010 Sep; 11(13):2834-7. PubMed ID: 20607711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategies for improving the electroactivity and specific metabolic functionality of microorganisms for various microbial electrochemical technologies.
    Chiranjeevi P; Patil SA
    Biotechnol Adv; 2020; 39():107468. PubMed ID: 31707076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Enterobacter aerogenes fuel cells: from in situ biohydrogen oxidization to direct electroactive biofilm.
    Zhuang L; Zhou S; Yuan Y; Liu T; Wu Z; Cheng J
    Bioresour Technol; 2011 Jan; 102(1):284-9. PubMed ID: 20598528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of electrode micro- and nano-scale topography on the formation and performance of microbial electrodes.
    Champigneux P; Delia ML; Bergel A
    Biosens Bioelectron; 2018 Oct; 118():231-246. PubMed ID: 30098490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Techniques for the study and development of microbial fuel cells: an electrochemical perspective.
    Zhao F; Slade RC; Varcoe JR
    Chem Soc Rev; 2009 Jul; 38(7):1926-39. PubMed ID: 19551173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic versus microbial bio-catalyzed electrodes in bio-electrochemical systems.
    Lapinsonnière L; Picot M; Barrière F
    ChemSusChem; 2012 Jun; 5(6):995-1005. PubMed ID: 22674690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced electricity production by use of reconstituted artificial consortia of estuarine bacteria grown as biofilms.
    Zhang J; Zhang E; Scott K; Burgess JG
    Environ Sci Technol; 2012 Mar; 46(5):2984-92. PubMed ID: 22352455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical and microbial monitoring of multi-generational electroactive biofilms formed from mangrove sediment.
    Rivalland C; Madhkour S; Salvin P; Robert F
    Bioelectrochemistry; 2015 Dec; 106(Pt A):125-32. PubMed ID: 26055041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new approach for in situ cyclic voltammetry of a microbial fuel cell biofilm without using a potentiostat.
    Cheng KY; Cord-Ruwisch R; Ho G
    Bioelectrochemistry; 2009 Feb; 74(2):227-31. PubMed ID: 19019740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.