These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 22279021)

  • 1. Application of the N(2)/Ar technique to measuring soil-atmosphere N(2) fluxes.
    Yang WH; Silver WL
    Rapid Commun Mass Spectrom; 2012 Feb; 26(4):449-59. PubMed ID: 22279021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrogen isotopes determination in natural gas: analytical method and first results on magmatic, hydrothermal and soil gas samples.
    Grassa F; Capasso G; Oliveri Y; Sollami A; Carreira P; Rosario Carvalho M; Marques JM; Nunes JC
    Isotopes Environ Health Stud; 2010 Jun; 46(2):141-55. PubMed ID: 20582784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simplified method for quantifying theoretical underestimation of chamber-based trace gas fluxes.
    Venterea RT
    J Environ Qual; 2010; 39(1):126-35. PubMed ID: 20048300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of N2, N2O, NO, and CO2 emissions from soil with the gas-flow-soil-core technique.
    Wang R; Willibald G; Feng Q; Zheng X; Liao T; Brüggemann N; Butterbach-Bahl K
    Environ Sci Technol; 2011 Jul; 45(14):6066-72. PubMed ID: 21678900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vertical gradients of delta15N and delta18O in soil atmospheric N2O--temporal dynamics in a sandy soil.
    Van Groenigen JW; Zwart KB; Harris D; van Kessel C
    Rapid Commun Mass Spectrom; 2005; 19(10):1289-95. PubMed ID: 15838846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of sampling frequency on estimates of cumulative nitrous oxide emissions.
    Parkin TB
    J Environ Qual; 2008; 37(4):1390-5. PubMed ID: 18574170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural ³⁷Ar concentrations in soil air: implications for monitoring underground nuclear explosions.
    Riedmann RA; Purtschert R
    Environ Sci Technol; 2011 Oct; 45(20):8656-64. PubMed ID: 21877757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculating the detection limits of chamber-based soil greenhouse gas flux measurements.
    Parkin TB; Venterea RT; Hargreaves SK
    J Environ Qual; 2012; 41(3):705-15. PubMed ID: 22565252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N(2)O concentration and isotope signature along profiles provide deeper insight into the fate of N(2)O in soils.
    Goldberg SD; Knorr KH; Gebauer G
    Isotopes Environ Health Stud; 2008 Dec; 44(4):377-91. PubMed ID: 19061068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of air and VOC vapor fluxes during gas-driven soil remediation: bench-scale experiments.
    Kim H; Kim T; Shin S; Annable MD
    Environ Sci Technol; 2012 Sep; 46(17):9533-40. PubMed ID: 22775202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrate leaching and nitrous oxide flux in urban forests and grasslands.
    Groffman PM; Williams CO; Pouyat RV; Band LE; Yesilonis ID
    J Environ Qual; 2009; 38(5):1848-60. PubMed ID: 19643750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling of the long term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part I. Model description and evaluation.
    Scholtz MT; Bidleman TF
    Sci Total Environ; 2006 Sep; 368(2-3):823-38. PubMed ID: 16678241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gaseous fluxes in the nitrogen and carbon budgets of subsurface flow constructed wetlands.
    Mander U; Lõhmus K; Teiter S; Mauring T; Nurk K; Augustin J
    Sci Total Environ; 2008 Oct; 404(2-3):343-53. PubMed ID: 18486194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling of mercury emissions from background soils.
    Scholtz MT; Van Heyst BJ; Schroeder WH
    Sci Total Environ; 2003 Mar; 304(1-3):185-207. PubMed ID: 12663183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atmospheric mercury exchange with a tallgrass prairie ecosystem housed in mesocosms.
    Stamenkovic J; Gustin MS; Arnone JA; Johnson DW; Larsen JD; Verburg PS
    Sci Total Environ; 2008 Nov; 406(1-2):227-38. PubMed ID: 18775555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isotope fractionation factors of N2O diffusion.
    Well R; Flessa H
    Rapid Commun Mass Spectrom; 2008 Sep; 22(17):2621-8. PubMed ID: 18666201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy and precision for measurements of the mass ratio 30/28 in dinitrogen from air samples and its application to the investigation of N losses from soil by denitrification.
    Russow R; Stevens RJ; Laughlin RJ
    Isotopes Environ Health Stud; 1996 Aug; 32(2-3):289-97. PubMed ID: 22088121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of the
    Well R; Burkart S; Giesemann A; Grosz B; Köster JR; Lewicka-Szczebak D
    Rapid Commun Mass Spectrom; 2019 Mar; 33(5):437-448. PubMed ID: 30474287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of a closed tunnel for field-scale measurements of nitrous oxide fluxes from an unfertilized grassland soil.
    Schäfer K; Böttcher J; Weymann D; von der Heide C; Duijnisveld WH
    J Environ Qual; 2012; 41(5):1383-92. PubMed ID: 23099929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of nitrogen balance between the atmosphere and Lake Balaton and a semi natural grassland in Hungary.
    Kugler S; Horváth L; Machon A
    Environ Pollut; 2008 Aug; 154(3):498-503. PubMed ID: 18060671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.