These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 22279151)

  • 1. An energetically beneficial leader-linker interaction abolishes ligand-binding cooperativity in glycine riboswitches.
    Sherman EM; Esquiaqui J; Elsayed G; Ye JD
    RNA; 2012 Mar; 18(3):496-507. PubMed ID: 22279151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of quaternary structure and enhancement of ligand binding by the K-turn of tandem glycine riboswitches.
    Baird NJ; Ferré-D'Amaré AR
    RNA; 2013 Feb; 19(2):167-76. PubMed ID: 23249744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a tertiary interaction important for cooperative ligand binding by the glycine riboswitch.
    Erion TV; Strobel SA
    RNA; 2011 Jan; 17(1):74-84. PubMed ID: 21098652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA-rescuable allosteric inhibition of aptamer II ligand affinity by aptamer I element in the shortened Vibrio cholerae glycine riboswitch.
    Sherman EM; Elsayed G; Esquiaqui JM; Elsayed M; Brinda B; Ye JD
    J Biochem; 2014 Dec; 156(6):323-31. PubMed ID: 25092436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutational analysis of the purine riboswitch aptamer domain.
    Gilbert SD; Love CE; Edwards AL; Batey RT
    Biochemistry; 2007 Nov; 46(46):13297-309. PubMed ID: 17960911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand binding by the tandem glycine riboswitch depends on aptamer dimerization but not double ligand occupancy.
    Ruff KM; Strobel SA
    RNA; 2014 Nov; 20(11):1775-88. PubMed ID: 25246650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated RNA structure prediction uncovers a kink-turn linker in double glycine riboswitches.
    Kladwang W; Chou FC; Das R
    J Am Chem Soc; 2012 Jan; 134(3):1404-7. PubMed ID: 22192063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interplay of 'induced fit' and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch.
    Noeske J; Buck J; Fürtig B; Nasiri HR; Schwalbe H; Wöhnert J
    Nucleic Acids Res; 2007; 35(2):572-83. PubMed ID: 17175531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissecting electrostatic screening, specific ion binding, and ligand binding in an energetic model for glycine riboswitch folding.
    Lipfert J; Sim AY; Herschlag D; Doniach S
    RNA; 2010 Apr; 16(4):708-19. PubMed ID: 20194520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A glycine-dependent riboswitch that uses cooperative binding to control gene expression.
    Mandal M; Lee M; Barrick JE; Weinberg Z; Emilsson GM; Ruzzo WL; Breaker RR
    Science; 2004 Oct; 306(5694):275-9. PubMed ID: 15472076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The asymmetry and cooperativity of tandem glycine riboswitch aptamers.
    Torgerson CD; Hiller DA; Strobel SA
    RNA; 2020 May; 26(5):564-580. PubMed ID: 31992591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand-dependent folding of the three-way junction in the purine riboswitch.
    Stoddard CD; Gilbert SD; Batey RT
    RNA; 2008 Apr; 14(4):675-84. PubMed ID: 18268025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain.
    Gilbert SD; Stoddard CD; Wise SJ; Batey RT
    J Mol Biol; 2006 Jun; 359(3):754-68. PubMed ID: 16650860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Singlet glycine riboswitches bind ligand as well as tandem riboswitches.
    Ruff KM; Muhammad A; McCown PJ; Breaker RR; Strobel SA
    RNA; 2016 Nov; 22(11):1728-1738. PubMed ID: 27659053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pseudoknot preorganization of the preQ1 class I riboswitch.
    Santner T; Rieder U; Kreutz C; Micura R
    J Am Chem Soc; 2012 Jul; 134(29):11928-31. PubMed ID: 22775200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical basis of glycine riboswitch cooperativity.
    Kwon M; Strobel SA
    RNA; 2008 Jan; 14(1):25-34. PubMed ID: 18042658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for pseudoknot formation of class I preQ1 riboswitch aptamers.
    Rieder U; Lang K; Kreutz C; Polacek N; Micura R
    Chembiochem; 2009 May; 10(7):1141-4. PubMed ID: 19382115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligand binding and gene control characteristics of tandem riboswitches in Bacillus anthracis.
    Welz R; Breaker RR
    RNA; 2007 Apr; 13(4):573-82. PubMed ID: 17307816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structures of two aptamers with differing ligand specificity reveal ruggedness in the functional landscape of RNA.
    Knappenberger AJ; Reiss CW; Strobel SA
    Elife; 2018 Jun; 7():. PubMed ID: 29877798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing the dynamics of the leader-linker interaction in the glycine riboswitch with site-directed spin labeling.
    Esquiaqui JM; Sherman EM; Ionescu SA; Ye JD; Fanucci GE
    Biochemistry; 2014 Jun; 53(22):3526-8. PubMed ID: 24849816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.