These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 22279924)

  • 41. Photo-removal of sulfamethoxazole (SMX) by photolytic and photocatalytic processes in a batch reactor under UV-C radiation (λmax=254 nm).
    Nasuhoglu D; Yargeau V; Berk D
    J Hazard Mater; 2011 Feb; 186(1):67-75. PubMed ID: 21167641
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Treatment of a 2,4-dichlorophenol contaminated wastewater in an air-lift inner-loop bioreactor].
    Quan X; Zhang Y; Wang J; Shi H; Qian Y
    Huan Jing Ke Xue; 2002 Jul; 23(4):42-6. PubMed ID: 12371101
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A continuous flow MFC-CW coupled with a biofilm electrode reactor to simultaneously attenuate sulfamethoxazole and its corresponding resistance genes.
    Li H; Song HL; Yang XL; Zhang S; Yang YL; Zhang LM; Xu H; Wang YW
    Sci Total Environ; 2018 Oct; 637-638():295-305. PubMed ID: 29751310
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhanced photocatalytic degradation of sulfamethoxazole by zinc oxide photocatalyst in the presence of fluoride ions: Optimization of parameters and toxicological evaluation.
    Mirzaei A; Yerushalmi L; Chen Z; Haghighat F; Guo J
    Water Res; 2018 Apr; 132():241-251. PubMed ID: 29331911
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biosorption of phenol and 2-chlorophenol by Funalia trogii pellets.
    Bayramoglu G; Gursel I; Tunali Y; Arica MY
    Bioresour Technol; 2009 May; 100(10):2685-91. PubMed ID: 19186052
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of UVA/LED/TiO
    Cai Q; Hu J
    Water Res; 2018 Sep; 140():251-260. PubMed ID: 29723814
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An airlift biofilm reactor for the biodegradation of phenol by Pseudomonas stutzeri OX1.
    Viggiani A; Olivieri G; Siani L; Di Donato A; Marzocchella A; Salatino P; Barbieri P; Galli E
    J Biotechnol; 2006 Jun; 123(4):464-77. PubMed ID: 16490274
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bioaugmentation of biological contact oxidation reactor (BCOR) with phenol-degrading bacteria for coal gasification wastewater (CGW) treatment.
    Fang F; Han H; Zhao Q; Xu C; Zhang L
    Bioresour Technol; 2013 Dec; 150():314-20. PubMed ID: 24177165
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electrical stimulation on biodegradation of phenol and responses of microbial communities in conductive carriers supported biofilms of the bioelectrochemical reactor.
    Ailijiang N; Chang J; Liang P; Li P; Wu Q; Zhang X; Huang X
    Bioresour Technol; 2016 Feb; 201():1-7. PubMed ID: 26615496
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Photoassisted Biodegradation of Irradiated Organics in Simulated Nuclear Wastewater.
    Makgato SS; Nkhalambayausi-Chirwa EM
    Water Environ Res; 2015 May; 87(5):392-403. PubMed ID: 26460459
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sequential treatment via Trametes versicolor and UV/TiO2/Ru(x)Se(y) to reduce contaminants in waste water resulting from the bleaching process during paper production.
    Pedroza AM; Mosqueda R; Alonso-Vante N; Rodríguez-Vázquez R
    Chemosphere; 2007 Mar; 67(4):793-801. PubMed ID: 17123583
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Anaerobic biodegradation of 2,4,6-trichlorophenol in expanded granular sludge bed and fluidized bed biofilm reactors bioaugmented with Desulfitobacterium spp.
    Puyol D; Rajhi H; Mohedano AF; Rodríguez JJ; Sanz JL
    Water Sci Technol; 2011; 64(1):293-9. PubMed ID: 22053488
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biological treatment of industrial wastes in a photobioreactor.
    Essam T; Amin MA; El Tayeb O; Mattiasson B; Guieysse B
    Water Sci Technol; 2006; 53(11):117-25. PubMed ID: 16862781
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Influence of carrier filling ratio on the performance of moving bed biofilm reactor in treating coking wastewater.
    Gu Q; Sun T; Wu G; Li M; Qiu W
    Bioresour Technol; 2014 Aug; 166():72-8. PubMed ID: 24907566
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An anoxic-aerobic system for simultaneous biodegradation of phenol and ammonia in a sequencing batch reactor.
    Liu Q; Singh VP; Fu Z; Wang J; Hu L
    Environ Sci Pollut Res Int; 2017 Apr; 24(12):11789-11799. PubMed ID: 28342078
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Performance of pulsed plate bioreactor for biodegradation of phenol.
    Shetty KV; Kalifathulla I; Srinikethan G
    J Hazard Mater; 2007 Feb; 140(1-2):346-52. PubMed ID: 17092642
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phenol biodegradation and simultaneous nitrogen removal using a carbon fiber felt biofilm reactor.
    Chen Y; Liu M; Xu F; Zhu S; Shen S
    Water Sci Technol; 2010; 62(5):1052-9. PubMed ID: 20818045
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Strategies to enhance the biodegradation of toxic compounds using discontinuous processes.
    Buitrón G; Soto G; Vite G; Moreno J
    Water Sci Technol; 2001; 43(3):283-90. PubMed ID: 11381918
    [TBL] [Abstract][Full Text] [Related]  

  • 59. pH induced polychromatic UV treatment for the removal of a mixture of SMX, OTC and CIP from water.
    Avisar D; Lester Y; Mamane H
    J Hazard Mater; 2010 Mar; 175(1-3):1068-74. PubMed ID: 19944527
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sequential UV-biological degradation of chlorophenols.
    Tamer E; Hamid Z; Aly AM; Ossama el T; Bo M; Benoit G
    Chemosphere; 2006 Apr; 63(2):277-84. PubMed ID: 16153682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.