BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 22279931)

  • 1. [Remediation of Cu/phenanthrene and combined contaminated loess soil by chemical-enhanced washing].
    Zhong JK; Zhao BW; Zhu K; Ma FF; Yang XC; Ran JY
    Huan Jing Ke Xue; 2011 Oct; 32(10):3106-12. PubMed ID: 22279931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of Pb and MDF from contaminated soils by EDTA- and SDS-enhanced washing.
    Zhang W; Tsang DC; Lo IM
    Chemosphere; 2007 Feb; 66(11):2025-34. PubMed ID: 17123574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of Pb by EDTA-washing in the presence of hydrophobic organic contaminants or anionic surfactant.
    Zhang W; Tsang DC; Lo IM
    J Hazard Mater; 2008 Jul; 155(3):433-9. PubMed ID: 18178310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Remediation of Cu-Pb-contaminated loess soil by leaching with chelating agent and biosurfactant].
    Liu X; Wang JT; Zhang M; Wang L; Yang YT
    Huan Jing Ke Xue; 2013 Apr; 34(4):1590-7. PubMed ID: 23798147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Flushing of phenanthrene in sandy soils by triton X-100 and sodium dodecyl sulfate].
    Zhao BW; Wang HF; Che HL; Xu J; Zhang CL; Wang P
    Huan Jing Ke Xue; 2010 Jul; 31(7):1631-7. PubMed ID: 20825037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remediation of phenanthrene contaminated soils by nonionic-anionic surfactant washing coupled with activated carbon adsorption.
    Liu J; Chen W
    Water Sci Technol; 2015; 72(9):1552-60. PubMed ID: 26524446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remediation of PAH-Contaminated Soil by Combining Surfactant Enhanced Soil Washing and Iron-Activated Persulfate Oxidation Process.
    Qiu Y; Xu M; Sun Z; Li H
    Int J Environ Res Public Health; 2019 Feb; 16(3):. PubMed ID: 30717404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined application of EDDS and EDTA for removal of potentially toxic elements under multiple soil washing schemes.
    Beiyuan J; Tsang DCW; Valix M; Baek K; Ok YS; Zhang W; Bolan NS; Rinklebe J; Li XD
    Chemosphere; 2018 Aug; 205():178-187. PubMed ID: 29698828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced desorption of phenanthrene from contaminated soil using anionic/nonionic mixed surfactant.
    Zhou W; Zhu L
    Environ Pollut; 2007 May; 147(2):350-7. PubMed ID: 16890334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical separation and reuse of EDTA after extraction of Cu contaminated soil.
    Voglar D; Lestan D
    J Hazard Mater; 2010 Aug; 180(1-3):152-7. PubMed ID: 20430521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Washing copper (II)-contaminated soil using surfactant solutions].
    Zhao BW; Wu YQ; Ma CY; Zhu RJ
    Huan Jing Ke Xue; 2009 Oct; 30(10):3067-71. PubMed ID: 19968132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the selective EDTA derivative phenyldiaminetetraacetic acid on the speciation and extraction of heavy metals from a contaminated soil.
    Zhang T; Wei H; Yang XH; Xia B; Liu JM; Su CY; Qiu RL
    Chemosphere; 2014 Aug; 109():1-6. PubMed ID: 24873699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal operational conditions for the electrochemical regeneration of a soil washing EDTA solution.
    Cesaro R; Esposito G
    J Environ Monit; 2009 Feb; 11(2):307-13. PubMed ID: 19212586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytoremediation of soils contaminated with phenanthrene and cadmium by growing willow (Salix × aureo-pendula CL 'j1011').
    Sun YY; Xu HX; Li JH; Shi XQ; Wu JC; Ji R; Guo HY
    Int J Phytoremediation; 2016; 18(2):150-6. PubMed ID: 26247604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EDTA leaching of Cu contaminated soil using electrochemical treatment of the washing solution.
    Pociecha M; Lestan D
    J Hazard Mater; 2009 Jun; 165(1-3):533-9. PubMed ID: 19022571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Impact of compounded chelants on removal of heavy metals and characteristics of morphologic change in soil from heavy metals contaminated sites].
    Yin X; Chen JJ; Lü C
    Huan Jing Ke Xue; 2014 Feb; 35(2):733-9. PubMed ID: 24812971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chelant extraction of heavy metals from contaminated soils using new selective EDTA derivatives.
    Zhang T; Liu JM; Huang XF; Xia B; Su CY; Luo GF; Xu YW; Wu YX; Mao ZW; Qiu RL
    J Hazard Mater; 2013 Nov; 262():464-71. PubMed ID: 24076482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surfactant-facilitated remediation of metal-contaminated soils: efficacy and toxicological consequences to earthworms.
    Slizovskiy IB; Kelsey JW; Hatzinger PB
    Environ Toxicol Chem; 2011 Jan; 30(1):112-23. PubMed ID: 20853447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous application of chemical oxidation and extraction processes is effective at remediating soil Co-contaminated with petroleum and heavy metals.
    Yoo JC; Lee C; Lee JS; Baek K
    J Environ Manage; 2017 Jan; 186(Pt 2):314-319. PubMed ID: 27017307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel EDTA and process water recycling method after soil washing of multi-metal contaminated soil.
    Pociecha M; Lestan D
    J Hazard Mater; 2012 Jan; 201-202():273-9. PubMed ID: 22178371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.