These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 22280066)
41. Signatures of Fano interferences in the electron energy loss spectroscopy and cathodoluminescence of symmetry-broken nanorod dimers. Bigelow NW; Vaschillo A; Camden JP; Masiello DJ ACS Nano; 2013 May; 7(5):4511-9. PubMed ID: 23594310 [TBL] [Abstract][Full Text] [Related]
43. Plasmonic EIT-like switching in bright-dark-bright plasmon resonators. Chen J; Wang P; Chen C; Lu Y; Ming H; Zhan Q Opt Express; 2011 Mar; 19(7):5970-8. PubMed ID: 21451622 [TBL] [Abstract][Full Text] [Related]
44. Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance. Lu Y; Rhee JY; Jang WH; Lee YP Opt Express; 2010 Sep; 18(20):20912-7. PubMed ID: 20940986 [TBL] [Abstract][Full Text] [Related]
45. Fano Interference in the Optical Absorption of an Individual Gold-Silver Nanodimer. Lombardi A; Grzelczak MP; Pertreux E; Crut A; Maioli P; Pastoriza-Santos I; Liz-Marzán LM; Vallée F; Del Fatti N Nano Lett; 2016 Oct; 16(10):6311-6316. PubMed ID: 27648834 [TBL] [Abstract][Full Text] [Related]
46. Evanescent field enhancement due to plasmonic resonances of a metamaterial slab. Chiu KP; Kao TS; Tsai DP J Microsc; 2008 Feb; 229(Pt 2):313-9. PubMed ID: 18304091 [TBL] [Abstract][Full Text] [Related]
49. Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule. Osley EJ; Biris CG; Thompson PG; Jahromi RR; Warburton PA; Panoiu NC Phys Rev Lett; 2013 Feb; 110(8):087402. PubMed ID: 23473201 [TBL] [Abstract][Full Text] [Related]
50. Energy transfer and depolarization in the photoluminescence of a plasmonic molecule. Yin T; Jiang L; Dong Z; Yang JK; Shen ZX Nanoscale; 2017 Feb; 9(5):2082-2087. PubMed ID: 28116398 [TBL] [Abstract][Full Text] [Related]
51. Periodicity-induced symmetry breaking in a Fano lattice: hybridization and tight-binding regimes. Yan C; Martin OJ ACS Nano; 2014 Nov; 8(11):11860-8. PubMed ID: 25386975 [TBL] [Abstract][Full Text] [Related]
52. Plasmonic Fano resonances in metallic nanorod complexes. Yang ZJ; Hao ZH; Lin HQ; Wang QQ Nanoscale; 2014 May; 6(10):4985-97. PubMed ID: 24733287 [TBL] [Abstract][Full Text] [Related]
53. Excitation and tuning of higher-order Fano resonances in plasmonic oligomer clusters. Dregely D; Hentschel M; Giessen H ACS Nano; 2011 Oct; 5(10):8202-11. PubMed ID: 21879759 [TBL] [Abstract][Full Text] [Related]
54. Multiple reversals of optical binding force in plasmonic disk-ring nanostructures with dipole-multipole Fano resonances. Zhang Q; Xiao JJ Opt Lett; 2013 Oct; 38(20):4240-3. PubMed ID: 24321969 [TBL] [Abstract][Full Text] [Related]
55. Plasmonic interactions: from molecular plasmonics and Fano resonances to ferroplasmons. Passarelli N; Pérez LA; Coronado EA ACS Nano; 2014 Oct; 8(10):9723-8. PubMed ID: 25325151 [TBL] [Abstract][Full Text] [Related]
56. Near-field spectral properties of coupled plasmonic nanoparticle arrays. Yu H; Sun Q; Yang J; Ueno K; Oshikiri T; Kubo A; Matsuo Y; Gong Q; Misawa H Opt Express; 2017 Mar; 25(6):6883-6894. PubMed ID: 28381030 [TBL] [Abstract][Full Text] [Related]
57. Self-assembled plasmonic nanoparticle clusters. Fan JA; Wu C; Bao K; Bao J; Bardhan R; Halas NJ; Manoharan VN; Nordlander P; Shvets G; Capasso F Science; 2010 May; 328(5982):1135-8. PubMed ID: 20508125 [TBL] [Abstract][Full Text] [Related]