These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 22280105)

  • 1. Dual defects of cation and anion in memristive nonvolatile memory of metal oxides.
    Oka K; Yanagida T; Nagashima K; Kanai M; Xu B; Park BH; Katayama-Yoshida H; Kawai T
    J Am Chem Soc; 2012 Feb; 134(5):2535-8. PubMed ID: 22280105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial nonuniformity in resistive-switching memory effects of NiO.
    Oka K; Yanagida T; Nagashima K; Kanai M; Kawai T; Kim JS; Park BH
    J Am Chem Soc; 2011 Aug; 133(32):12482-5. PubMed ID: 21776966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deterministic Role of Concentration Surplus of Cation Vacancy over Anion Vacancy in Bipolar Memristive NiO.
    Sun Z; Zhao Y; He M; Gu L; Ma C; Jin K; Zhao D; Luo N; Zhang Q; Wang N; Duan W; Nan CW
    ACS Appl Mater Interfaces; 2016 May; 8(18):11583-91. PubMed ID: 27096884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO2, NiO and Pr0.7Ca0.3MnO3.
    Magyari-Köpe B; Tendulkar M; Park SG; Lee HD; Nishi Y
    Nanotechnology; 2011 Jun; 22(25):254029. PubMed ID: 21572196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsic mechanisms of memristive switching.
    Nagashima K; Yanagida T; Oka K; Kanai M; Klamchuen A; Kim JS; Park BH; Kawai T
    Nano Lett; 2011 May; 11(5):2114-8. PubMed ID: 21476563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High performance bipolar resistive switching memory devices based on Zn2SnO4 nanowires.
    Dong H; Zhang X; Zhao D; Niu Z; Zeng Q; Li J; Cai L; Wang Y; Zhou W; Gao M; Xie S
    Nanoscale; 2012 Apr; 4(8):2571-4. PubMed ID: 22419367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanism of electroforming of metal oxide memristive switches.
    Joshua Yang J; Miao F; Pickett MD; Ohlberg DA; Stewart DR; Lau CN; Williams RS
    Nanotechnology; 2009 May; 20(21):215201. PubMed ID: 19423925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ TEM studies of oxygen vacancy migration for electrically induced resistance change effect in cerium oxides.
    Gao P; Wang Z; Fu W; Liao Z; Liu K; Wang W; Bai X; Wang E
    Micron; 2010 Jun; 41(4):301-5. PubMed ID: 20042340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Si-based flexible memristive systems constructed using top-down methods.
    Moon T; Kang J; Han Y; Kim C; Jeon Y; Kim H; Kim S
    ACS Appl Mater Interfaces; 2011 Oct; 3(10):3957-61. PubMed ID: 21899257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TiO2--a prototypical memristive material.
    Szot K; Rogala M; Speier W; Klusek Z; Besmehn A; Waser R
    Nanotechnology; 2011 Jun; 22(25):254001. PubMed ID: 21572202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Memristive switching mechanism for metal/oxide/metal nanodevices.
    Yang JJ; Pickett MD; Li X; Ohlberg DA; Stewart DR; Williams RS
    Nat Nanotechnol; 2008 Jul; 3(7):429-33. PubMed ID: 18654568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale resistive switching devices: mechanisms and modeling.
    Yang Y; Lu W
    Nanoscale; 2013 Nov; 5(21):10076-92. PubMed ID: 24057010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoionics-based resistive switching memories.
    Waser R; Aono M
    Nat Mater; 2007 Nov; 6(11):833-40. PubMed ID: 17972938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prominent thermodynamical interaction with surroundings on nanoscale memristive switching of metal oxides.
    Nagashima K; Yanagida T; Oka K; Kanai M; Klamchuen A; Rahong S; Meng G; Horprathum M; Xu B; Zhuge F; He Y; Park BH; Kawai T
    Nano Lett; 2012 Nov; 12(11):5684-90. PubMed ID: 23039823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonvolatile bipolar resistive memory switching in single crystalline NiO heterostructured nanowires.
    Oka K; Yanagida T; Nagashima K; Tanaka H; Kawai T
    J Am Chem Soc; 2009 Mar; 131(10):3434-5. PubMed ID: 19228063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scaling effect on unipolar and bipolar resistive switching of metal oxides.
    Yanagida T; Nagashima K; Oka K; Kanai M; Klamchuen A; Park BH; Kawai T
    Sci Rep; 2013; 3():1657. PubMed ID: 23584551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative Observation of Threshold Defect Behavior in Memristive Devices with Operando X-ray Microscopy.
    Liu H; Dong Y; Cherukara MJ; Sasikumar K; Narayanan B; Cai Z; Lai B; Stan L; Hong S; Chan MKY; Sankaranarayanan SKRS; Zhou H; Fong DD
    ACS Nano; 2018 May; 12(5):4938-4945. PubMed ID: 29715007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm.
    Alibart F; Gao L; Hoskins BD; Strukov DB
    Nanotechnology; 2012 Feb; 23(7):075201. PubMed ID: 22260949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of Oxygen Vacancy Configuration for Memristive Systems.
    Schmitt R; Spring J; Korobko R; Rupp JLM
    ACS Nano; 2017 Sep; 11(9):8881-8891. PubMed ID: 28850213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deterministic conversion between memory and threshold resistive switching via tuning the strong electron correlation.
    Peng HY; Li YF; Lin WN; Wang YZ; Gao XY; Wu T
    Sci Rep; 2012; 2():442. PubMed ID: 22679556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.