These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 22280105)

  • 41. Nonvolatile memory properties of Pt nanoparticle-embedded TiO(2) nanocomposite multilayers via electrostatic layer-by-layer assembly.
    Lee C; Kim I; Shin H; Kim S; Cho J
    Nanotechnology; 2010 May; 21(18):185704. PubMed ID: 20378950
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Charge distribution near bulk oxygen vacancies in cerium oxides.
    Shoko E; Smith MF; McKenzie RH
    J Phys Condens Matter; 2010 Jun; 22(22):223201. PubMed ID: 21393738
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The role of ion transport phenomena in memristive double barrier devices.
    Dirkmann S; Hansen M; Ziegler M; Kohlstedt H; Mussenbrock T
    Sci Rep; 2016 Oct; 6():35686. PubMed ID: 27762294
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Resistive switching in single epitaxial ZnO nanoislands.
    Qi J; Olmedo M; Ren J; Zhan N; Zhao J; Zheng JG; Liu J
    ACS Nano; 2012 Feb; 6(2):1051-8. PubMed ID: 22257020
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides.
    Nian YB; Strozier J; Wu NJ; Chen X; Ignatiev A
    Phys Rev Lett; 2007 Apr; 98(14):146403. PubMed ID: 17501295
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bulk heterojunction polymer memory devices with reduced graphene oxide as electrodes.
    Liu J; Yin Z; Cao X; Zhao F; Lin A; Xie L; Fan Q; Boey F; Zhang H; Huang W
    ACS Nano; 2010 Jul; 4(7):3987-92. PubMed ID: 20540553
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Oxygen Exchange Processes between Oxide Memristive Devices and Water Molecules.
    Heisig T; Baeumer C; Gries UN; Mueller MP; La Torre C; Luebben M; Raab N; Du H; Menzel S; Mueller DN; Jia CL; Mayer J; Waser R; Valov I; De Souza RA; Dittmann R
    Adv Mater; 2018 Jun; ():e1800957. PubMed ID: 29882270
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Metal filament growth in electrically conductive polymers for nonvolatile memory application.
    Joo WJ; Choi TL; Lee J; Lee SK; Jung MS; Kim N; Kim JM
    J Phys Chem B; 2006 Nov; 110(47):23812-6. PubMed ID: 17125345
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory.
    Lee MJ; Han S; Jeon SH; Park BH; Kang BS; Ahn SE; Kim KH; Lee CB; Kim CJ; Yoo IK; Seo DH; Li XS; Park JB; Lee JH; Park Y
    Nano Lett; 2009 Apr; 9(4):1476-81. PubMed ID: 19296606
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Oxygen-deficient perovskites: linking structure, energetics and ion transport.
    Stølen S; Bakken E; Mohn CE
    Phys Chem Chem Phys; 2006 Jan; 8(4):429-47. PubMed ID: 16482285
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nonvolatile unipolar and bipolar bistable memory characteristics of a high temperature polyimide bearing diphenylaminobenzylidenylimine moieties.
    Kim K; Park S; Hahm SG; Lee TJ; Kim DM; Kim JC; Kwon W; Ko YG; Ree M
    J Phys Chem B; 2009 Jul; 113(27):9143-50. PubMed ID: 19518112
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A simple device unit consisting of all NiO storage and switch elements for multilevel terabit nonvolatile random access memory.
    Lee MJ; Ahn SE; Lee CB; Kim CJ; Jeon S; Chung UI; Yoo IK; Park GS; Han S; Hwang IR; Park BH
    ACS Appl Mater Interfaces; 2011 Nov; 3(11):4475-9. PubMed ID: 21988144
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Memristive switching of single-component metallic nanowires.
    Johnson SL; Sundararajan A; Hunley DP; Strachan DR
    Nanotechnology; 2010 Mar; 21(12):125204. PubMed ID: 20203360
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interlayer switching of reduction in layered oxide, Bi4V2O(11-δ) (0 ≤ δ ≤ 1).
    Zhang Y; Ueda Y
    Inorg Chem; 2013 May; 52(9):5206-13. PubMed ID: 23586983
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrically controlled transformation of memristive titanates into mesoporous titanium oxides via incongruent sublimation.
    Rodenbücher C; Meuffels P; Bihlmayer G; Speier W; Du H; Schwedt A; Breuer U; Jia CL; Mayer J; Waser R; Szot K
    Sci Rep; 2018 Feb; 8(1):3774. PubMed ID: 29491379
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Subfilamentary Networks Cause Cycle-to-Cycle Variability in Memristive Devices.
    Baeumer C; Valenta R; Schmitz C; Locatelli A; Menteş TO; Rogers SP; Sala A; Raab N; Nemsak S; Shim M; Schneider CM; Menzel S; Waser R; Dittmann R
    ACS Nano; 2017 Jul; 11(7):6921-6929. PubMed ID: 28661649
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Defects in doped LaGaO3 anionic conductors: linking NMR spectral features, local environments, and defect thermodynamics.
    Blanc F; Middlemiss DS; Gan Z; Grey CP
    J Am Chem Soc; 2011 Nov; 133(44):17662-72. PubMed ID: 21916439
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Resistive switching memory devices composed of binary transition metal oxides using sol-gel chemistry.
    Lee C; Kim I; Choi W; Shin H; Cho J
    Langmuir; 2009 Apr; 25(8):4274-8. PubMed ID: 19317425
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Switching synchronization in one-dimensional memristive networks.
    Slipko VA; Shumovskyi M; Pershin YV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052917. PubMed ID: 26651772
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Carrier generation in multicomponent wide-bandgap oxides: InGaZnO4.
    Murat A; Adler AU; Mason TO; Medvedeva JE
    J Am Chem Soc; 2013 Apr; 135(15):5685-92. PubMed ID: 23484800
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.