BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 22280617)

  • 21. Fine-tuned echolocation and capture-flight of Myotis capaccinii when facing different-sized insect and fish prey.
    Aizpurua O; Aihartza J; Alberdi A; Baagøe HJ; Garin I
    J Exp Biol; 2014 Sep; 217(Pt 18):3318-25. PubMed ID: 25013107
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel biomimetic sonarhead using beamforming technology to mimic bat echolocation.
    Steckel J; Peremans H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jul; 59(7):1369-77. PubMed ID: 22828832
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modelling simultaneous echo waveform reconstruction and localization in bats.
    De Mey F; Schillebeeckx F; Vanderelst D; Boen A; Peremans H
    Biosystems; 2010 May; 100(2):94-100. PubMed ID: 20149838
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional organization of mustached bat inferior colliculus: I. Representation of FM frequency bands important for target ranging revealed by 14C-2-deoxyglucose autoradiography and single unit mapping.
    O'Neill WE; Frisina RD; Gooler DM
    J Comp Neurol; 1989 Jun; 284(1):60-84. PubMed ID: 2754031
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Echolocation call intensity and directionality in flying short-tailed fruit bats, Carollia perspicillata (Phyllostomidae).
    Brinkløv S; Jakobsen L; Ratcliffe JM; Kalko EK; Surlykke A
    J Acoust Soc Am; 2011 Jan; 129(1):427-35. PubMed ID: 21303022
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Directionality of hearing in two CF/FM bats, Pteronotus parnellii and Rhinolophus rouxi.
    Firzlaff U; Schuller G
    Hear Res; 2004 Nov; 197(1-2):74-86. PubMed ID: 15504606
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A computational sensorimotor model of bat echolocation.
    Erwin HR; Wilson WW; Moss CF
    J Acoust Soc Am; 2001 Aug; 110(2):1176-87. PubMed ID: 11519584
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sonar strobe groups and buzzes are produced before powered flight is achieved in the juvenile big brown bat,
    Mayberry HW; Faure PA; Ratcliffe JM
    J Exp Biol; 2019 Oct; 222(Pt 20):. PubMed ID: 31548288
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wireless recording of the calls of Rousettus aegyptiacus and their reproduction using electrostatic transducers.
    Whiteley SM; Waters DA; Hayward G; Pierce SG; Farr I
    Bioinspir Biomim; 2010 Jun; 5(2):026001. PubMed ID: 20458135
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interaction of vestibular, echolocation, and visual modalities guiding flight by the big brown bat, Eptesicus fuscus.
    Horowitz SS; Cheney CA; Simmons JA
    J Vestib Res; 2004; 14(1):17-32. PubMed ID: 15156093
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Morphology-induced information transfer in bat sonar.
    Reijniers J; Vanderelst D; Peremans H
    Phys Rev Lett; 2010 Oct; 105(14):148701. PubMed ID: 21230873
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Range estimation by echolocation in the bat Eptesicus fuscus: trading of phase versus time cues.
    Menne D; Kaipf I; Wagner I; Ostwald J; Schnitzler HU
    J Acoust Soc Am; 1989 Jun; 85(6):2642-50. PubMed ID: 2745884
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automatic gain control in the echolocation system of dolphins.
    Au WW; Benoit-Bird KJ
    Nature; 2003 Jun; 423(6942):861-3. PubMed ID: 12815429
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of preceding sonar emission on temporal integration in the bat, Megaderma lyra.
    Weissenbacher P; Wiegrebe L; Kössl M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Mar; 188(2):147-55. PubMed ID: 11919696
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Discrimination of jittered sonar echoes by the echolocating bat, Eptesicus fuscus: the shape of target images in echolocation.
    Simmons JA; Ferragamo M; Moss CF; Stevenson SB; Altes RA
    J Comp Physiol A; 1990 Nov; 167(5):589-616. PubMed ID: 2074548
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mouth gape angle has little effect on the transmitted signals of big brown bats (Eptesicus fuscus).
    Kloepper LN; Gaudette JE; Simmons JA; Buck JR
    J Acoust Soc Am; 2014 Oct; 136(4):1964-71. PubMed ID: 25324095
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-dimensional sonar beam-width expansion by Japanese house bats (Pipistrellus abramus) during natural foraging.
    Motoi K; Sumiya M; Fujioka E; Hiryu S
    J Acoust Soc Am; 2017 May; 141(5):EL439. PubMed ID: 28599524
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multi-component separation and analysis of bat echolocation calls.
    DiCecco J; Gaudette JE; Simmons JA
    J Acoust Soc Am; 2013 Jan; 133(1):538-46. PubMed ID: 23297925
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transformation of external-ear spectral cues into perceived delays by the big brown bat, Eptesicus fuscus.
    Simmons JA; Wotton JM; Ferragamo MJ; Moss CF
    J Acoust Soc Am; 2002 Jun; 111(6):2771-82. PubMed ID: 12083212
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Echolocation and flight strategy of Japanese house bats during natural foraging, revealed by a microphone array system.
    Fujioka E; Mantani S; Hiryu S; Riquimaroux H; Watanabe Y
    J Acoust Soc Am; 2011 Feb; 129(2):1081-8. PubMed ID: 21361464
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.