These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 22280743)

  • 1. Correlation potentials for molecular bond dissociation within the self-consistent random phase approximation.
    Hellgren M; Rohr DR; Gross EK
    J Chem Phys; 2012 Jan; 136(3):034106. PubMed ID: 22280743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Describing static correlation in bond dissociation by Kohn-Sham density functional theory.
    Fuchs M; Niquet YM; Gonze X; Burke K
    J Chem Phys; 2005 Mar; 122(9):094116. PubMed ID: 15836121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increasing the applicability of density functional theory. II. Correlation potentials from the random phase approximation and beyond.
    Verma P; Bartlett RJ
    J Chem Phys; 2012 Jan; 136(4):044105. PubMed ID: 22299859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A first-principles study of weakly bound molecules using exact exchange and the random phase approximation.
    Nguyen HV; Galli G
    J Chem Phys; 2010 Jan; 132(4):044109. PubMed ID: 20113021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid functionals including random phase approximation correlation and second-order screened exchange.
    Paier J; Janesko BG; Henderson TM; Scuseria GE; Grüneis A; Kresse G
    J Chem Phys; 2010 Mar; 132(9):094103. PubMed ID: 20210385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bond breaking and bond formation: how electron correlation is captured in many-body perturbation theory and density-functional theory.
    Caruso F; Rohr DR; Hellgren M; Ren X; Rinke P; Rubio A; Scheffler M
    Phys Rev Lett; 2013 Apr; 110(14):146403. PubMed ID: 25167014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correct description of the bond dissociation limit without breaking spin symmetry by a random-phase-approximation correlation functional.
    Hesselmann A; Görling A
    Phys Rev Lett; 2011 Mar; 106(9):093001. PubMed ID: 21405619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exchange-correlation energy from pairing matrix fluctuation and the particle-particle random phase approximation.
    van Aggelen H; Yang Y; Yang W
    J Chem Phys; 2014 May; 140(18):18A511. PubMed ID: 24832319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Derivative discontinuity, bandgap and lowest unoccupied molecular orbital in density functional theory.
    Yang W; Cohen AJ; Mori-Sánchez P
    J Chem Phys; 2012 May; 136(20):204111. PubMed ID: 22667544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The limitations of Slater's element-dependent exchange functional from analytic density-functional theory.
    Zope RR; Dunlap BI
    J Chem Phys; 2006 Jan; 124(4):044107. PubMed ID: 16460149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benchmark tests and spin adaptation for the particle-particle random phase approximation.
    Yang Y; van Aggelen H; Steinmann SN; Peng D; Yang W
    J Chem Phys; 2013 Nov; 139(17):174110. PubMed ID: 24206290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Derivative discontinuity and exchange-correlation potential of meta-GGAs in density-functional theory.
    Eich FG; Hellgren M
    J Chem Phys; 2014 Dec; 141(22):224107. PubMed ID: 25494732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The flexible nature of exchange, correlation, and Hartree physics: resolving "delocalization" errors in a "correlation free" density functional.
    Gould T; Dobson JF
    J Chem Phys; 2013 Jan; 138(1):014103. PubMed ID: 23298024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Density functionals from many-body perturbation theory: the band gap for semiconductors and insulators.
    Grüning M; Marini A; Rubio A
    J Chem Phys; 2006 Apr; 124(15):154108. PubMed ID: 16674219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orbital energies and negative electron affinities from density functional theory: Insight from the integer discontinuity.
    Teale AM; De Proft F; Tozer DJ
    J Chem Phys; 2008 Jul; 129(4):044110. PubMed ID: 18681637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beyond the random-phase approximation for the electron correlation energy: the importance of single excitations.
    Ren X; Tkatchenko A; Rinke P; Scheffler M
    Phys Rev Lett; 2011 Apr; 106(15):153003. PubMed ID: 21568551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Equivalence of particle-particle random phase approximation correlation energy and ladder-coupled-cluster doubles.
    Peng D; Steinmann SN; van Aggelen H; Yang W
    J Chem Phys; 2013 Sep; 139(10):104112. PubMed ID: 24050333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spurious fractional charge on dissociated atoms: pervasive and resilient self-interaction error of common density functionals.
    Ruzsinszky A; Perdew JP; Csonka GI; Vydrov OA; Scuseria GE
    J Chem Phys; 2006 Nov; 125(19):194112. PubMed ID: 17129094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kohn-Sham band gaps and potentials of solids from the optimised effective potential method within the random phase approximation.
    Klimeš J; Kresse G
    J Chem Phys; 2014 Feb; 140(5):054516. PubMed ID: 24511961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Random-Phase Approximation Methods.
    Chen GP; Voora VK; Agee MM; Balasubramani SG; Furche F
    Annu Rev Phys Chem; 2017 May; 68():421-445. PubMed ID: 28301757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.