These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Serine/threonine protein kinase PpkA contributes to the adaptation and virulence in Pseudomonas aeruginosa. Pan J; Zha Z; Zhang P; Chen R; Ye C; Ye T Microb Pathog; 2017 Dec; 113():5-10. PubMed ID: 29038052 [TBL] [Abstract][Full Text] [Related]
8. The Small RNAs PA2952.1 and PrrH as Regulators of Virulence, Motility, and Iron Metabolism in Pseudomonas aeruginosa. Coleman SR; Bains M; Smith ML; Spicer V; Lao Y; Taylor PK; Mookherjee N; Hancock REW Appl Environ Microbiol; 2021 Jan; 87(3):. PubMed ID: 33158897 [No Abstract] [Full Text] [Related]
9. Pseudomonas aeruginosa SoxR does not conform to the archetypal paradigm for SoxR-dependent regulation of the bacterial oxidative stress adaptive response. Palma M; Zurita J; Ferreras JA; Worgall S; Larone DH; Shi L; Campagne F; Quadri LE Infect Immun; 2005 May; 73(5):2958-66. PubMed ID: 15845502 [TBL] [Abstract][Full Text] [Related]
10. Response of Pseudomonas aeruginosa PAO1 to low shear modelled microgravity involves AlgU regulation. Crabbé A; Pycke B; Van Houdt R; Monsieurs P; Nickerson C; Leys N; Cornelis P Environ Microbiol; 2010 Jun; 12(6):1545-64. PubMed ID: 20236169 [TBL] [Abstract][Full Text] [Related]
11. Adaptation of Pseudomonas aeruginosa during persistence in the cystic fibrosis lung. Hogardt M; Heesemann J Int J Med Microbiol; 2010 Dec; 300(8):557-62. PubMed ID: 20943439 [TBL] [Abstract][Full Text] [Related]
12. Transcriptional and proteomic responses of Pseudomonas aeruginosa PAO1 to spaceflight conditions involve Hfq regulation and reveal a role for oxygen. Crabbé A; Schurr MJ; Monsieurs P; Morici L; Schurr J; Wilson JW; Ott CM; Tsaprailis G; Pierson DL; Stefanyshyn-Piper H; Nickerson CA Appl Environ Microbiol; 2011 Feb; 77(4):1221-30. PubMed ID: 21169425 [TBL] [Abstract][Full Text] [Related]
13. Small regulatory RNAs in Pseudomonas aeruginosa. Sonnleitner E; Romeo A; Bläsi U RNA Biol; 2012 Apr; 9(4):364-71. PubMed ID: 22336763 [TBL] [Abstract][Full Text] [Related]
14. Identification of AlgR-regulated genes in Pseudomonas aeruginosa by use of microarray analysis. Lizewski SE; Schurr JR; Jackson DW; Frisk A; Carterson AJ; Schurr MJ J Bacteriol; 2004 Sep; 186(17):5672-84. PubMed ID: 15317771 [TBL] [Abstract][Full Text] [Related]
15. Potassium and sodium transporters of Pseudomonas aeruginosa regulate virulence to barley. Ueda A; Wood TK Appl Microbiol Biotechnol; 2008 Jul; 79(5):843-58. PubMed ID: 18481058 [TBL] [Abstract][Full Text] [Related]
16. Microarray analysis of the osmotic stress response in Pseudomonas aeruginosa. Aspedon A; Palmer K; Whiteley M J Bacteriol; 2006 Apr; 188(7):2721-5. PubMed ID: 16547062 [TBL] [Abstract][Full Text] [Related]
17. Early adaptive developments of Pseudomonas aeruginosa after the transition from life in the environment to persistent colonization in the airways of human cystic fibrosis hosts. Rau MH; Hansen SK; Johansen HK; Thomsen LE; Workman CT; Nielsen KF; Jelsbak L; Høiby N; Yang L; Molin S Environ Microbiol; 2010 Jun; 12(6):1643-58. PubMed ID: 20406284 [TBL] [Abstract][Full Text] [Related]
18. Isolation and characterization of HepP: a virulence-related Pseudomonas aeruginosa heparinase. Dzvova N; Colmer-Hamood JA; Griswold JA; Hamood AN BMC Microbiol; 2017 Dec; 17(1):233. PubMed ID: 29246112 [TBL] [Abstract][Full Text] [Related]
19. Comparative genome and transcriptome analysis reveals distinctive surface characteristics and unique physiological potentials of Pseudomonas aeruginosa ATCC 27853. Cao H; Lai Y; Bougouffa S; Xu Z; Yan A BMC Genomics; 2017 Jun; 18(1):459. PubMed ID: 28606056 [TBL] [Abstract][Full Text] [Related]
20. Effects of null mutation of the heat-shock gene htpG on the production of virulence factors by Pseudomonas aeruginosa. Grudniak AM; Klecha B; Wolska KI Future Microbiol; 2018 Jan; 13():69-80. PubMed ID: 29199454 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]