These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 22281147)

  • 1. Bioprocess design guided by in situ substrate supply and product removal: process intensification for synthesis of (S)-1-(2-chlorophenyl)ethanol.
    Schmölzer K; Mädje K; Nidetzky B; Kratzer R
    Bioresour Technol; 2012 Mar; 108(C):216-23. PubMed ID: 22281147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harnessing Candida tenuis and Pichia stipitis in whole-cell bioreductions of o-chloroacetophenone: stereoselectivity, cell activity, in situ substrate supply and product removal.
    Gruber C; Krahulec S; Nidetzky B; Kratzer R
    Biotechnol J; 2013 Jun; 8(6):699-708. PubMed ID: 23589466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scale-up and intensification of (S)-1-(2-chlorophenyl)ethanol bioproduction: economic evaluation of whole cell-catalyzed reduction of o-chloroacetophenone.
    Eixelsberger T; Woodley JM; Nidetzky B; Kratzer R
    Biotechnol Bioeng; 2013 Aug; 110(8):2311-5. PubMed ID: 23475609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of whole-cell reaction and product isolation: Highly hydrophobic solvents promote in situ substrate supply and simplify extractive product isolation.
    Leis D; Lauß B; Macher-Ambrosch R; Pfennig A; Nidetzky B; Kratzer R
    J Biotechnol; 2017 Sep; 257():110-117. PubMed ID: 27913217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme identification and development of a whole-cell biotransformation for asymmetric reduction of o-chloroacetophenone.
    Kratzer R; Pukl M; Egger S; Vogl M; Brecker L; Nidetzky B
    Biotechnol Bioeng; 2011 Apr; 108(4):797-803. PubMed ID: 21404254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Host cell and expression engineering for development of an E. coli ketoreductase catalyst: enhancement of formate dehydrogenase activity for regeneration of NADH.
    Mädje K; Schmölzer K; Nidetzky B; Kratzer R
    Microb Cell Fact; 2012 Jan; 11():7. PubMed ID: 22236335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pushing the limits: Cyclodextrin-based intensification of bioreductions.
    Rapp C; Nidetzky B; Kratzer R
    J Biotechnol; 2021 Jan; 325():57-64. PubMed ID: 33220340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Whole-cell bioreduction of aromatic alpha-keto esters using Candida tenuis xylose reductase and Candida boidinii formate dehydrogenase co-expressed in Escherichia coli.
    Kratzer R; Pukl M; Egger S; Nidetzky B
    Microb Cell Fact; 2008 Dec; 7():37. PubMed ID: 19077192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization.
    Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B
    Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rules for biocatalyst and reaction engineering to implement effective, NAD(P)H-dependent, whole cell bioreductions.
    Kratzer R; Woodley JM; Nidetzky B
    Biotechnol Adv; 2015 Dec; 33(8):1641-52. PubMed ID: 26343336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Saccharomyces cerevisiae B5 efficiently and stereoselectively reduces 2'-chloroacetophenone to R-2'-chloro-1-phenylethanol in the presence of 5% ethanol].
    Ou ZM; Wu JP; Yang LR; Cen PL; Liu L; Qi N
    Sheng Wu Gong Cheng Xue Bao; 2003 Mar; 19(2):206-11. PubMed ID: 15966323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient-state and steady-state kinetic studies of the mechanism of NADH-dependent aldehyde reduction catalyzed by xylose reductase from the yeast Candida tenuis.
    Nidetzky B; Klimacek M; Mayr P
    Biochemistry; 2001 Aug; 40(34):10371-81. PubMed ID: 11513616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The catalytic mechanism of NADH-dependent reduction of 9,10-phenanthrenequinone by Candida tenuis xylose reductase reveals plasticity in an aldo-keto reductase active site.
    Pival SL; Klimacek M; Nidetzky B
    Biochem J; 2009 Jun; 421(1):43-9. PubMed ID: 19368528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric reduction of o-chloroacetophenone with Candida pseudotropicalis 104.
    Xie Q; Wu J; Xu G; Yang L
    Biotechnol Prog; 2006; 22(5):1301-4. PubMed ID: 17022667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of nitrogen sources on oxidoreductive enzymes and ethanol production during D-xylose fermentation by Candida shehatae.
    Palnitkar S; Lachke A
    Can J Microbiol; 1992 Mar; 38(3):258-60. PubMed ID: 1393828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography.
    Petschacher B; Leitgeb S; Kavanagh KL; Wilson DK; Nidetzky B
    Biochem J; 2005 Jan; 385(Pt 1):75-83. PubMed ID: 15320875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic reaction profile for NADH-dependent reduction of aromatic aldehydes by xylose reductase from Candida tenuis.
    Mayr P; Nidetzky B
    Biochem J; 2002 Sep; 366(Pt 3):889-99. PubMed ID: 12003638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Candida tenuis xylose reductase catalyzed reduction of aryl ketones for enantioselective synthesis of active oxetine derivatives.
    Vogl M; Kratzer R; Nidetzky B; Brecker L
    Chirality; 2012 Oct; 24(10):847-53. PubMed ID: 22833502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A pH-controlled fed-batch process can overcome inhibition by formate in NADH-dependent enzymatic reductions using formate dehydrogenase-catalyzed coenzyme regeneration.
    Neuhauser W; Steininger M; Haltrich D; Kulbe KD; Nidetzky B
    Biotechnol Bioeng; 1998 Nov; 60(3):277-82. PubMed ID: 10099429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant.
    Kratzer R; Kavanagh KL; Wilson DK; Nidetzky B
    Biochemistry; 2004 May; 43(17):4944-54. PubMed ID: 15109252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.