BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 22281179)

  • 1. On Moffatt dehydration of glucose-derived nitro alcohols.
    Lugiņina J; Rjabovs V; Belyakov S; Turks M
    Carbohydr Res; 2012 Mar; 350():86-9. PubMed ID: 22281179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and X-ray studies of novel 3-C-nitromethyl-hexofuranoses.
    Turks M; Vēze K; Kiseļovs G; Mackeviča J; Lugiņina J; Mishnev A; Marković D
    Carbohydr Res; 2014 Jun; 391():82-8. PubMed ID: 24785391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large scale isolation of 1,2:3,4-di-O-isopropylidene-α-D-glucoseptanose and 2,3:4,5-di-O-isopropylidene-β-D-glucoseptanose.
    Stevens JD
    Carbohydr Res; 2011 Apr; 346(5):689-90. PubMed ID: 21353207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photochemical conversion of sugar dimethylthiocarbamates into deoxy sugars.
    Bell H; Horton D; Williams DM; Winter-Mihaly E
    Carbohydr Res; 1977 Sep; 58(1):109-24. PubMed ID: 912673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of 6-deoxy-L-idose and L-acovenose from 1,2: 5,6-di-O-isopropylidene-alpha-D-glucofuranose.
    Hung SC; Thopate SR; Puranik R
    Carbohydr Res; 2001 Apr; 331(4):369-74. PubMed ID: 11398979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binuclear copper(II) complexes of 5-N-(beta-ketoen)amino-5-deoxy-1,2-O-isopropylidene-alpha-D-glucofuranoses: synthesis, structure, and catecholoxidase activity.
    Gottschaldt M; Wegner R; Görls H; Klüfers P; Jäger EG; Klemm D
    Carbohydr Res; 2004 Aug; 339(11):1941-52. PubMed ID: 15261587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functionalization of glucose at position C-3 for transition metal coordination: organo-rhenium complexes with carbohydrate skeletons.
    Dumas C; Petrig J; Frei L; Spingler B; Schibli R
    Bioconjug Chem; 2005; 16(2):421-8. PubMed ID: 15769097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Divergent Pd(II) and Au(III) mediated nitroalkynol cycloisomerizations.
    Patel P; Ramana CV
    Org Biomol Chem; 2011 Nov; 9(21):7327-34. PubMed ID: 21887442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Domino reactions for the synthesis of various α-substituted nitro alkenes.
    Fioravanti S; Pellacani L; Vergari MC
    Org Biomol Chem; 2012 Jan; 10(3):524-8. PubMed ID: 22024987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A practical access to glucose- and allose-based (5+5) 3-spiropseudonucleosides from a common intermediate.
    Turks M; Rodins V; Rolava E; Ostrovskis P; Belyakov S
    Carbohydr Res; 2013 Jun; 375():5-15. PubMed ID: 23665157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A concise synthesis of 3-fluoro-5-thio-xylo- and glucopyranoses, useful precursors towards their corresponding pyranonucleoside derivatives.
    Tsoukala E; Manta S; Tzioumaki N; Agelis G; Komiotis D
    Carbohydr Res; 2008 May; 343(6):1099-103. PubMed ID: 18313037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new and efficient entry to D-xylo-hexos-4-ulose and some derivatives thereof through epoxidation of the 3,4-hexeno derivative of diacetone-D-glucose.
    Attolino E; Catelani G; D'Andrea F; Landi M
    Carbohydr Res; 2006 Nov; 341(15):2498-506. PubMed ID: 16949562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A click chemistry approach to glycomimetics: Michael addition of 2,3,4,6-tetra-O-acetyl-1-thio-beta-D-glucopyranose to 4-deoxy-1,2-O-isopropylidene-L-glycero-pent-4-enopyranos-3-ulose--a convenient route to novel 4-deoxy-(1-->5)-5-C-thiodisaccharides.
    Witczak ZJ; Lorchak D; Nguyen N
    Carbohydr Res; 2007 Sep; 342(12-13):1929-33. PubMed ID: 17588551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel synthesis of antineoplastic 4'-thionucleosides using D-glucose as a chiral synthon.
    Yoshimura Y; Satoh H; Watanabe M; Sakata S; Miura S; Tanaka M; Sasaki T; Matsuda A
    Nucleic Acids Symp Ser; 1995; (34):161-2. PubMed ID: 8841602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photorelease of alcohols from 2-nitrobenzyl ethers proceeds via hemiacetals and may be further retarded by buffers intercepting the primary aci-nitro intermediates.
    Hellrung B; Kamdzhilov Y; Schwörer M; Wirz J
    J Am Chem Soc; 2005 Jun; 127(25):8934-5. PubMed ID: 15969554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A catalytic highly enantioselective direct synthesis of 2-bromo-2-nitroalkan-1-ols through a Henry reaction.
    Blay G; Hernández-Olmos V; Pedro JR
    Chem Commun (Camb); 2008 Oct; (39):4840-2. PubMed ID: 18830511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Indium triflate-assisted nucleophilic aromatic substitution reactions of nitrosobezene-derived cycloadducts with alcohols.
    Yang B; Miller MJ
    Org Lett; 2010 Jan; 12(2):392-5. PubMed ID: 20000806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enantioselective organocatalyzed Henry reaction with fluoromethyl ketones.
    Bandini M; Sinisi R; Umani-Ronchi A
    Chem Commun (Camb); 2008 Sep; (36):4360-2. PubMed ID: 18802570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An efficient synthesis of methyl 1,3-O-isopropylidene-alpha-D-fructofuranoside and 2,3:5,6-di-O-isopropylidene-D-glucose dimethyl acetal derivatives from sucrose.
    Hanaya T; Sato N; Yamamoto H
    Carbohydr Res; 2005 Nov; 340(16):2494-501. PubMed ID: 16168975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient synthesis of 6-O-palmitoyl-1,2-O-isopropylidene-α-D-glucofuranose in an organic solvent system by lipase-catalyzed esterification.
    Kobayashi T; Ehara T; Mizuoka T; Adachi S
    Biotechnol Lett; 2010 Nov; 32(11):1679-84. PubMed ID: 20574832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.