These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 22281199)
1. Is the chromanol head group of vitamin E nature's final truth on chain-breaking antioxidants? Ohlow MJ; Granold M; Schreckenberger M; Moosmann B FEBS Lett; 2012 Mar; 586(6):711-6. PubMed ID: 22281199 [TBL] [Abstract][Full Text] [Related]
2. Prooxidant and antioxidant activity of vitamin E analogues and troglitazone. Tafazoli S; Wright JS; O'Brien PJ Chem Res Toxicol; 2005 Oct; 18(10):1567-74. PubMed ID: 16533021 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of a phosphatidyl derivative of vitamin E and its antioxidant activity in phospholipid bilayers. Koga T; Nagao A; Terao J; Sawada K; Mukai K Lipids; 1994 Feb; 29(2):83-9. PubMed ID: 8152350 [TBL] [Abstract][Full Text] [Related]
4. Potential therapeutic antioxidants that combine the radical scavenging ability of myricetin and the lipophilic chain of vitamin E to effectively inhibit microsomal lipid peroxidation. Bennett CJ; Caldwell ST; McPhail DB; Morrice PC; Duthie GG; Hartley RC Bioorg Med Chem; 2004 May; 12(9):2079-98. PubMed ID: 15080911 [TBL] [Abstract][Full Text] [Related]
5. The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Buettner GR Arch Biochem Biophys; 1993 Feb; 300(2):535-43. PubMed ID: 8434935 [TBL] [Abstract][Full Text] [Related]
6. Future directions of vitamin E and its analogues in minimizing myocardial ischemia-reperfusion injury. Mickle DA; Weisel RD Can J Cardiol; 1993; 9(1):89-93. PubMed ID: 8439833 [TBL] [Abstract][Full Text] [Related]
7. Free radical recycling and intramembrane mobility in the antioxidant properties of alpha-tocopherol and alpha-tocotrienol. Serbinova E; Kagan V; Han D; Packer L Free Radic Biol Med; 1991; 10(5):263-75. PubMed ID: 1649783 [TBL] [Abstract][Full Text] [Related]
8. 2,3-Dihydro-5-hydroxy-2,2-dipentyl-4,6-di-tert-butylbenzofuran: design and evaluation as a novel radical-scavenging antioxidant against lipid peroxidation. Noguchi N; Iwaki Y; Takahashi M; Komuro E; Kato Y; Tamura K; Cynshi O; Kodama T; Niki E Arch Biochem Biophys; 1997 Jun; 342(2):236-43. PubMed ID: 9186484 [TBL] [Abstract][Full Text] [Related]
9. [Phenolic chain-breaking antioxidants--their activity and mechanisms of action]. Kowalewska E; Litwinienko G Postepy Biochem; 2010; 56(3):274-83. PubMed ID: 21117315 [TBL] [Abstract][Full Text] [Related]
10. Action of phenolic antioxidants on various active oxygen species. Cynshi O; Takashima Y; Katoh Y; Tamura K; Sato M; Fujita Y J Biolumin Chemilumin; 1995; 10(5):261-9. PubMed ID: 8533607 [TBL] [Abstract][Full Text] [Related]
11. Advantages and limitation of BODIPY as a probe for the evaluation of lipid peroxidation and its inhibition by antioxidants in plasma. Itoh N; Cao J; Chen ZH; Yoshida Y; Niki E Bioorg Med Chem Lett; 2007 Apr; 17(7):2059-63. PubMed ID: 17300936 [TBL] [Abstract][Full Text] [Related]
12. Oxidation of human red blood cells by a free radical initiator and effects of radical scavengers. Pekiner B; Pennock JF Biochem Mol Biol Int; 1994 Aug; 33(6):1159-67. PubMed ID: 7804142 [TBL] [Abstract][Full Text] [Related]
13. Antioxidant behaviors of vitamin E analogues in unilamellar vesicles. Koga T; Terao J Biosci Biotechnol Biochem; 1996 Jun; 60(6):1043-5. PubMed ID: 8695907 [TBL] [Abstract][Full Text] [Related]
14. Enhanced radical scavenging activity by antioxidant-functionalized gold nanoparticles: a novel inspiration for development of new artificial antioxidants. Nie Z; Liu KJ; Zhong CJ; Wang LF; Yang Y; Tian Q; Liu Y Free Radic Biol Med; 2007 Nov; 43(9):1243-54. PubMed ID: 17893037 [TBL] [Abstract][Full Text] [Related]
15. The protection of bioenergetic functions in mitochondria by new synthetic chromanols. Staniek K; Rosenau T; Gregor W; Nohl H; Gille L Biochem Pharmacol; 2005 Nov; 70(9):1361-70. PubMed ID: 16150421 [TBL] [Abstract][Full Text] [Related]
16. Natural and newly synthesized hydroxy-1-aryl-isochromans: a class of potential antioxidants and radical scavengers. Lorenz P; Zeh M; Martens-Lobenhoffer J; Schmidt H; Wolf G; Horn TF Free Radic Res; 2005 May; 39(5):535-45. PubMed ID: 16036330 [TBL] [Abstract][Full Text] [Related]
17. Structure-activity relationships of new 4-hydroxy bis-coumarins as radical scavengers and chain-breaking antioxidants. Kancheva VD; Boranova PV; Nechev JT; Manolov II Biochimie; 2010 Sep; 92(9):1138-46. PubMed ID: 20211681 [TBL] [Abstract][Full Text] [Related]
18. Antioxidative effects of curcumin and its analogues against the free-radical-induced peroxidation of linoleic acid in micelles. Dai F; Chen WF; Zhou B; Yang L; Liu ZL Phytother Res; 2009 Sep; 23(9):1220-8. PubMed ID: 19173279 [TBL] [Abstract][Full Text] [Related]
19. Hybrid-increased radical-scavenging activity of resveratrol derivatives by incorporating a chroman moiety of vitamin E. Yang J; Liu GY; Lu DL; Dai F; Qian YP; Jin XL; Zhou B Chemistry; 2010 Nov; 16(43):12808-13. PubMed ID: 20931567 [No Abstract] [Full Text] [Related]
20. Free radical interaction between vitamin E (alpha-, beta-, gamma- and delta-tocopherol), ascorbate and flavonoids. Kadoma Y; Ishihara M; Okada N; Fujisawa S In Vivo; 2006; 20(6B):823-7. PubMed ID: 17203774 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]