These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22281406)

  • 1. Solute transport across a contact interface in deformable porous media.
    Ateshian GA; Maas S; Weiss JA
    J Biomech; 2012 Apr; 45(6):1023-7. PubMed ID: 22281406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element algorithm for frictionless contact of porous permeable media under finite deformation and sliding.
    Ateshian GA; Maas S; Weiss JA
    J Biomech Eng; 2010 Jun; 132(6):061006. PubMed ID: 20887031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element implementation of mechanochemical phenomena in neutral deformable porous media under finite deformation.
    Ateshian GA; Albro MB; Maas S; Weiss JA
    J Biomech Eng; 2011 Aug; 133(8):081005. PubMed ID: 21950898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Finite Element Algorithm for Large Deformation Biphasic Frictional Contact Between Porous-Permeable Hydrated Soft Tissues.
    Zimmerman BK; Maas SA; Weiss JA; Ateshian GA
    J Biomech Eng; 2022 Feb; 144(2):. PubMed ID: 34382640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiphasic finite element framework for modeling hydrated mixtures with multiple neutral and charged solutes.
    Ateshian GA; Maas S; Weiss JA
    J Biomech Eng; 2013 Nov; 135(11):111001. PubMed ID: 23775399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Surface-to-Surface Finite Element Algorithm for Large Deformation Frictional Contact in febio.
    Zimmerman BK; Ateshian GA
    J Biomech Eng; 2018 Aug; 140(8):0810131-08101315. PubMed ID: 30003262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite Element Implementation of Computational Fluid Dynamics With Reactive Neutral and Charged Solute Transport in FEBio.
    Shim JJ; Maas SA; Weiss JA; Ateshian GA
    J Biomech Eng; 2023 Sep; 145(9):. PubMed ID: 37219843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of various contact algorithms for poroelastic tissues.
    Galbusera F; Bashkuev M; Wilke HJ; Shirazi-Adl A; Schmidt H
    Comput Methods Biomech Biomed Engin; 2014; 17(12):1323-34. PubMed ID: 23244496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FEBio: History and Advances.
    Maas SA; Ateshian GA; Weiss JA
    Annu Rev Biomed Eng; 2017 Jun; 19():279-299. PubMed ID: 28633565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mixed-penalty biphasic finite element formulation incorporating viscous fluids and material interfaces.
    Chan B; Donzelli PS; Spilker RL
    Ann Biomed Eng; 2000 Jun; 28(6):589-97. PubMed ID: 10983705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupled porohyperelastic mass transport (PHEXPT) finite element models for soft tissues using ABAQUS.
    Vande Geest JP; Simon BR; Rigby PH; Newberg TP
    J Biomech Eng; 2011 Apr; 133(4):044502. PubMed ID: 21428686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental investigation of solute transport across transition interface of porous media under reversible flow directions.
    Chen Z; Ma X; Zhan H; Dou Z; Wang J; Zhou Z; Peng C
    Ecotoxicol Environ Saf; 2022 Jun; 238():113566. PubMed ID: 35490576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Lagrange multiplier mixed finite element formulation for three-dimensional contact of biphasic tissues.
    Yang T; Spilker RL
    J Biomech Eng; 2007 Jun; 129(3):457-71. PubMed ID: 17536914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite Element Formulation of Multiphasic Shell Elements for Cell Mechanics Analyses in FEBio.
    Hou JC; Maas SA; Weiss JA; Ateshian GA
    J Biomech Eng; 2018 Aug; 140(12):. PubMed ID: 30098156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational modeling of chemical reactions and interstitial growth and remodeling involving charged solutes and solid-bound molecules.
    Ateshian GA; Nims RJ; Maas S; Weiss JA
    Biomech Model Mechanobiol; 2014 Oct; 13(5):1105-20. PubMed ID: 24558059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element analysis of biological soft tissue surrounded by a deformable membrane that controls transmembrane flow.
    Hirabayashi S; Iwamoto M
    Theor Biol Med Model; 2018 Dec; 15(1):21. PubMed ID: 30348205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of multiphysics models to efficient design of experiments of solute transport across articular cartilage.
    Pouran B; Arbabi V; Weinans H; Zadpoor AA
    Comput Biol Med; 2016 Nov; 78():91-96. PubMed ID: 27673491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite Element Implementation of Biphasic-Fluid Structure Interactions in febio.
    Shim JJ; Maas SA; Weiss JA; Ateshian GA
    J Biomech Eng; 2021 Sep; 143(9):. PubMed ID: 33764435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shear dispersion in a capillary tube with a porous wall.
    Dejam M; Hassanzadeh H; Chen Z
    J Contam Hydrol; 2016; 185-186():87-104. PubMed ID: 26845232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical signals and solute transport in human intervertebral disc during compressive stress relaxation: 3D finite element analysis.
    Yao H; Gu WY
    Biorheology; 2006; 43(3,4):323-35. PubMed ID: 16912405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.