These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 22281659)

  • 1. Redox-switchable devices based on functionalized graphene nanoribbons.
    Selli D; Baldoni M; Sgamellotti A; Mercuri F
    Nanoscale; 2012 Feb; 4(4):1350-4. PubMed ID: 22281659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning aromaticity patterns and electronic properties of armchair graphene nanoribbons with chemical edge functionalisation.
    Martin-Martinez FJ; Fias S; Van Lier G; De Proft F; Geerlings P
    Phys Chem Chem Phys; 2013 Aug; 15(30):12637-47. PubMed ID: 23787877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clar's theory, pi-electron distribution, and geometry of graphene nanoribbons.
    Wassmann T; Seitsonen AP; Saitta AM; Lazzeri M; Mauri F
    J Am Chem Soc; 2010 Mar; 132(10):3440-51. PubMed ID: 20178362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic structure and aromaticity of graphene nanoribbons.
    Martín-Martínez FJ; Fias S; Van Lier G; De Proft F; Geerlings P
    Chemistry; 2012 May; 18(20):6183-94. PubMed ID: 22517565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale lithography on monolayer graphene using hydrogenation and oxidation.
    Byun IS; Yoon D; Choi JS; Hwang I; Lee DH; Lee MJ; Kawai T; Son YW; Jia Q; Cheong H; Park BH
    ACS Nano; 2011 Aug; 5(8):6417-24. PubMed ID: 21777004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning the electronic structure and transport properties of graphene by noncovalent functionalization: effects of organic donor, acceptor and metal atoms.
    Zhang YH; Zhou KG; Xie KF; Zeng J; Zhang HL; Peng Y
    Nanotechnology; 2010 Feb; 21(6):065201. PubMed ID: 20057033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence of benzenoid domains in nanographenes.
    Baldoni M; Mercuri F
    Phys Chem Chem Phys; 2015 Jan; 17(3):2088-93. PubMed ID: 25483730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-quality graphene p-n junctions via resist-free fabrication and solution-based noncovalent functionalization.
    Cheng HC; Shiue RJ; Tsai CC; Wang WH; Chen YT
    ACS Nano; 2011 Mar; 5(3):2051-9. PubMed ID: 21322639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First-principles investigations on the functionalization of chiral and non-chiral carbon nanotubes by Diels-Alder cycloaddition reactions.
    Mercuri F; Sgamellotti A
    Phys Chem Chem Phys; 2009 Jan; 11(3):563-7. PubMed ID: 19283274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography.
    Tapasztó L; Dobrik G; Lambin P; Biró LP
    Nat Nanotechnol; 2008 Jul; 3(7):397-401. PubMed ID: 18654562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The computational design of junctions between carbon nanotubes and graphene nanoribbons.
    Li YF; Li BR; Zhang HL
    Nanotechnology; 2009 Jun; 20(22):225202. PubMed ID: 19433869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy gaps in supramolecular functionalized graphene nanoribbons.
    Nduwimana A; Wang XQ
    ACS Nano; 2009 Jul; 3(7):1995-9. PubMed ID: 19548689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards nano-organic chemistry: perspectives for a bottom-up approach to the synthesis of low-dimensional carbon nanostructures.
    Mercuri F; Baldoni M; Sgamellotti A
    Nanoscale; 2012 Jan; 4(2):369-79. PubMed ID: 22167069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charge-transport properties of prototype molecular materials for organic electronics based on graphene nanoribbons.
    Sancho-García JC; Pérez-Jiménez AJ
    Phys Chem Chem Phys; 2009 Apr; 11(15):2741-6. PubMed ID: 19421532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clar's sextet rule is a consequence of the sigma-electron framework.
    Maksić ZB; Barić D; Müller T
    J Phys Chem A; 2006 Aug; 110(33):10135-47. PubMed ID: 16913689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic properties of metal-arene functionalized graphene.
    Plachinda P; Evans DR; Solanki R
    J Chem Phys; 2011 Jul; 135(4):044103. PubMed ID: 21806086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sharpening the chemical scissors to unzip carbon nanotubes: crystalline graphene nanoribbons.
    Terrones M
    ACS Nano; 2010 Apr; 4(4):1775-81. PubMed ID: 20420468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical graphene nanoribbon assemblies feature unique electronic and mechanical properties.
    Xu Z; Buehler MJ
    Nanotechnology; 2009 Sep; 20(37):375704. PubMed ID: 19706941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ferrocene-terminated monolayers covalently bound to hydrogen-terminated silicon surfaces. Toward the development of charge storage and communication devices.
    Fabre B
    Acc Chem Res; 2010 Dec; 43(12):1509-18. PubMed ID: 20949977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.