These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 22281659)

  • 21. Ab initio characterization of graphene nanoribbons and their polymer precursors.
    Peköz R; Feng X; Donadio D
    J Phys Condens Matter; 2012 Mar; 24(10):104023. PubMed ID: 22353922
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spin polarized conductance in hybrid graphene nanoribbons using 5-7 defects.
    Botello-Méndez AR; Cruz-Silva E; López-Urías F; Sumpter BG; Meunier V; Terrones M; Terrones H
    ACS Nano; 2009 Nov; 3(11):3606-12. PubMed ID: 19863086
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optical and electronic properties of graphene nanoribbons upon adsorption of ligand-protected aluminum clusters.
    Gomes da Rocha C; Clayborne PA; Koskinen P; Häkkinen H
    Phys Chem Chem Phys; 2014 Feb; 16(8):3558-65. PubMed ID: 24413380
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The possibility of chemically inert, graphene-based all-carbon electronic devices with 0.8 eV gap.
    Qi JS; Huang JY; Feng J; Shi da N; Li J
    ACS Nano; 2011 May; 5(5):3475-82. PubMed ID: 21456598
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Disorder-based graphene spintronics.
    Rocha AR; Martins TB; Fazzio A; da Silva AJ
    Nanotechnology; 2010 Aug; 21(34):345202. PubMed ID: 20671366
    [TBL] [Abstract][Full Text] [Related]  

  • 26. From zigzag to armchair: the energetic stability, electronic and magnetic properties of chiral graphene nanoribbons with hydrogen-terminated edges.
    Sun L; Wei P; Wei J; Sanvito S; Hou S
    J Phys Condens Matter; 2011 Oct; 23(42):425301. PubMed ID: 21969127
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Suppression of electron-vibron coupling in graphene nanoribbons contacted via a single atom.
    van der Lit J; Boneschanscher MP; Vanmaekelbergh D; Ijäs M; Uppstu A; Ervasti M; Harju A; Liljeroth P; Swart I
    Nat Commun; 2013; 4():2023. PubMed ID: 23756598
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oxygen surface functionalization of graphene nanoribbons for transport gap engineering.
    Cresti A; Lopez-Bezanilla A; Ordejón P; Roche S
    ACS Nano; 2011 Nov; 5(11):9271-7. PubMed ID: 21985521
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Half-metallicity in hybrid BCN nanoribbons.
    Kan EJ; Wu X; Li Z; Zeng XC; Yang J; Hou JG
    J Chem Phys; 2008 Aug; 129(8):084712. PubMed ID: 19044846
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of very large values of magnetoresistance in a graphene nanoribbon device.
    Kim WY; Kim KS
    Nat Nanotechnol; 2008 Jul; 3(7):408-12. PubMed ID: 18654564
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preferential functionalization on zigzag graphene nanoribbons: first-principles calculations.
    Lee H
    J Phys Condens Matter; 2010 Sep; 22(35):352205. PubMed ID: 21403278
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electronic transport in three-terminal triangular carbon nanopatches.
    Costa AL; Meunier V; Girão EC
    Nanotechnology; 2014 Jan; 25(4):045706. PubMed ID: 24394719
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electronic properties of edge-functionalized zigzag graphene nanoribbons on SiO2 substrate.
    Zhang DM; Li Z; Zhong JF; Miao L; Jiang JJ
    Nanotechnology; 2011 Jul; 22(26):265702. PubMed ID: 21576802
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Is coronene better described by Clar's aromatic π-sextet model or by the AdNDP representation?
    Kumar A; Duran M; Solà M
    J Comput Chem; 2017 Jul; 38(18):1606-1611. PubMed ID: 28394019
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transport properties of T-shaped and crossed junctions based on graphene nanoribbons.
    OuYang F; Xiao J; Guo R; Zhang H; Xu H
    Nanotechnology; 2009 Feb; 20(5):055202. PubMed ID: 19417339
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrogen-free graphene edges.
    He K; Lee GD; Robertson AW; Yoon E; Warner JH
    Nat Commun; 2014; 5():3040. PubMed ID: 24413607
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of N/B doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, and graphene nanoribbons.
    Yu SS; Zheng WT
    Nanoscale; 2010 Jul; 2(7):1069-82. PubMed ID: 20648331
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Clar's aromatic sextet and π-electron distribution in nanographene.
    Fujii S; Enoki T
    Angew Chem Int Ed Engl; 2012 Jul; 51(29):7236-41. PubMed ID: 22644699
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility.
    Wei N; Xu L; Wang HQ; Zheng JC
    Nanotechnology; 2011 Mar; 22(10):105705. PubMed ID: 21289391
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interface structure and mechanics between graphene and metal substrates: a first-principles study.
    Xu Z; Buehler MJ
    J Phys Condens Matter; 2010 Dec; 22(48):485301. PubMed ID: 21406741
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.