BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 22281708)

  • 1. A secondary sialic acid binding site on influenza virus neuraminidase: fact or fiction?
    Lai JC; Garcia JM; Dyason JC; Böhm R; Madge PD; Rose FJ; Nicholls JM; Peiris JS; Haselhorst T; von Itzstein M
    Angew Chem Int Ed Engl; 2012 Feb; 51(9):2221-4. PubMed ID: 22281708
    [No Abstract]   [Full Text] [Related]  

  • 2. Correlation analyses on binding affinity of sialic acid analogues with influenza virus neuraminidase-1 using ab initio MO calculations on their complex structures.
    Hitaoka S; Harada M; Yoshida T; Chuman H
    J Chem Inf Model; 2010 Oct; 50(10):1796-805. PubMed ID: 20863103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotin-, fluorescein- and 'clickable' conjugates of phospha-oseltamivir as probes for the influenza virus which utilize selective binding to the neuraminidase.
    Stanley M; Martin SR; Birge M; Carbain B; Streicher H
    Org Biomol Chem; 2011 Aug; 9(16):5625-9. PubMed ID: 21720632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Docking and 3D-QSAR investigations of pyrrolidine derivatives as potent neuraminidase inhibitors.
    Sun J; Mei H
    Chem Biol Drug Des; 2012 May; 79(5):863-8. PubMed ID: 22251826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structure of the complex between influenza virus neuraminidase and sialic acid, the viral receptor.
    Varghese JN; McKimm-Breschkin JL; Caldwell JB; Kortt AA; Colman PM
    Proteins; 1992 Nov; 14(3):327-32. PubMed ID: 1438172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation analyses on binding affinity of sialic acid analogues and anti-influenza drugs with human neuraminidase using ab initio MO calculations on their complex structures--LERE-QSAR analysis (IV).
    Hitaoka S; Matoba H; Harada M; Yoshida T; Tsuji D; Hirokawa T; Itoh K; Chuman H
    J Chem Inf Model; 2011 Oct; 51(10):2706-16. PubMed ID: 21870866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study of the active site of influenza virus sialidase: an approach to the rational design of novel anti-influenza drugs.
    von Itzstein M; Dyason JC; Oliver SW; White HF; Wu WY; Kok GB; Pegg MS
    J Med Chem; 1996 Jan; 39(2):388-91. PubMed ID: 8558506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel 3,4-disubstituted-Neu5Ac2en derivatives as probes to investigate flexibility of the influenza virus sialidase 150-loop.
    Rudrawar S; Dyason JC; Maggioni A; Thomson RJ; von Itzstein M
    Bioorg Med Chem; 2013 Aug; 21(16):4820-30. PubMed ID: 23800724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influenza virus neuraminidase: structure, antibodies, and inhibitors.
    Colman PM
    Protein Sci; 1994 Oct; 3(10):1687-96. PubMed ID: 7849585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specificity of neuraminidase activity from influenza viruses isolated in different hosts tested with novel substrates.
    Katinger D; Mochalova L; Chinarev A; Bovin N; Romanova J
    Arch Virol; 2004 Nov; 149(11):2131-40. PubMed ID: 15503202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comment on "Another look at the molecular mechanism of the resistance of H5N1 influenza A virus neuraminidase (NA) to oseltamivir (OTV)".
    Rungrotmongkol T; Malaisree M; Udommaneethanakit T; Hannongbua S
    Biophys Chem; 2009 Apr; 141(1):131-2; author reply 133. PubMed ID: 19231807
    [No Abstract]   [Full Text] [Related]  

  • 12. Anti-viral inhibitor binding to influenza neuraminidase by MALDI mass spectrometry.
    Swaminathan K; Downard KM
    Anal Chem; 2012 Apr; 84(8):3725-30. PubMed ID: 22409142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel aromatic inhibitors of influenza virus neuraminidase make selective interactions with conserved residues and water molecules in the active site.
    Finley JB; Atigadda VR; Duarte F; Zhao JJ; Brouillette WJ; Air GM; Luo M
    J Mol Biol; 1999 Nov; 293(5):1107-19. PubMed ID: 10547289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional structure of the complex of 4-guanidino-Neu5Ac2en and influenza virus neuraminidase.
    Varghese JN; Epa VC; Colman PM
    Protein Sci; 1995 Jun; 4(6):1081-7. PubMed ID: 7549872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuraminidase of 2007-2008 influenza A(H1N1) viruses shows increased affinity for sialic acids due to the D344N substitution.
    Rameix-Welti MA; Munier S; Le Gal S; Cuvelier F; Agou F; Enouf V; Naffakh N; van der Werf S
    Antivir Ther; 2011; 16(4):597-603. PubMed ID: 21685548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comment on 'Comment on "Another look at the molecular mechanism of the resistance of H5N1 influenza A virus neuraminidase (NA) to oseltamivir (OTV)"'.
    Mitrasinovic PM
    Biophys Chem; 2011 Mar; 154(2-3):102. PubMed ID: 21316835
    [No Abstract]   [Full Text] [Related]  

  • 17. Infiltration of water molecules into the oseltamivir-binding site of H274Y neuraminidase mutant causes resistance to oseltamivir.
    Park JW; Jo WH
    J Chem Inf Model; 2009 Dec; 49(12):2735-41. PubMed ID: 19957991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catechin inhibition of influenza neuraminidase and its molecular basis with mass spectrometry.
    Müller P; Downard KM
    J Pharm Biomed Anal; 2015; 111():222-30. PubMed ID: 25910046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics and free energy analysis of neuraminidase-ligand interactions.
    Bonnet P; Bryce RA
    Protein Sci; 2004 Apr; 13(4):946-57. PubMed ID: 15044728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Receptor binding specificity of influenza virus and its budding from the host cells].
    Suzuki Y
    Tanpakushitsu Kakusan Koso; 2003 Jun; 48(8 Suppl):1141-6. PubMed ID: 12807021
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.